朗缪尔方程

✍ dations ◷ 2025-12-03 13:35:28 #表面化学

朗缪尔方程(英语:Langmuir equation,亦称为朗缪尔等温线、朗缪尔吸附方程或兰牟而方程或希尔-朗缪尔方程)建立了在一定温度下分子在固体表面的覆盖范围或吸附情况与固体表面之上介质的气压或浓度之间的关系。此方程由欧文·朗缪尔于1916年建立。此方程表达为:

θ {\displaystyle \theta } 个活性位点以供个微粒结合。
2. 一个活性位点只能被一个微粒所占有。
3. 所有活性位点都是相互独立的。一个位点被占有的概率是与邻近位点的状态无关的。

个微粒被吸附到个位点之系统的配分函数(假设位点较微粒数量多)为:

其中是每个微粒的分布函数:

如果我们允许微粒的数量增加以便所有位点被占有,配分函数就变成了:

我们可以看出对于单个活性位点的此配分函数可被表示为

现可以很容易地算出被占有空位的平均数。

重整

最终:

朗缪尔方程可被表示为:

其中K为朗缪尔平衡常数,c为水溶液浓度(或气体分压),Γ为吸附量,Γmax为当c增加时的最大吸附量。

平衡常数实际由 Γ m a x {\displaystyle \Gamma _{max}} 轴与轴,则此种回归就会转换为之前所讨论的莱恩威弗-伯克回归。最后要介绍的常见线性回归是由朗缪尔亲自于1918年提出的:

以(c/Γ)对(c)作图,得到斜率即为1/Γmax而截距即为1/(KΓmax)。此种回归方法常被错误地叫为哈内斯-伍尔夫回归。哈内斯-伍尔夫是于1932年与1957年被提出来拟合米氏方程的,后者在形式上与朗缪尔方程较为相似。然而,朗缪尔在1918年提出了这个线性回归方法,且在应用到吸附等温线领域时应被称为是。朗缪尔回归对错误数据有着极低的敏感度。它在拟合中高浓度范围的数据区时会产生一些偏差。

有两种非线性最小二乘法(NLLS)回归方法可以被用于将朗缪尔方程拟合到数据集上。他们的区别仅仅在于如何定义拟合优度。在v-NLLS回归法中,最佳拟合优度被定义为:在被拟合曲线与数据之间误差最小的曲线。在n-NLLS回归法中,最佳拟合优度被定义为:在被拟合曲线与数据之间误差最小的曲线。使用垂直误差是NLLS回归标准的最常见形式。基于法向误差的定义较为少见。法向误差是指参考点离被拟合曲线最近点之间的误差。他之所以被称为是法向误差是因为样本轨道是法向(即成直角)着曲线的。

普遍存在一种错误印象,那就是认为NLLS回归法可以避免偏差。然而需要重视的是,v-NLLS回归法在拟合低浓度范围的数据区时会产生偏差。这是因为朗缪尔方程的曲线在低浓度区会急剧上升,这导致如果回归在此区域不能很好地拟合图形的话,就会产生较大的垂直误差。相反,n-NLLS回归法对于拟合吸附等温线的任何区域来说都不会有任何明显地偏差。

然而,线性回归对于例如Excel或手持计算器等简单程序来说执行相对简单一些,非线性回归更难解决。NLLS回归法对于任意一款电脑程序执行效果都最佳。

相关

  • 费奥多西亚费奥多西亚(英语:Feodossia;俄语:Феодо́сия,Feodosiya;克里米亚鞑靼语和土耳其语:Kefe),古称卡法(Kaffa),是位于黑海北岸克里米亚半岛的城市。在20世纪中期,苏联统治下的费奥多
  • 木卫一木卫一也称为“艾奥”或“伊俄”(发音为/ˈaɪ.oʊ/, 或是希腊 Ἰώ),是木星的四颗伽利略卫星中最靠近木星的一颗卫星,直径为3,642公里,是太阳系第四大卫星。名字来自众神之王宙
  • 邻里咖啡店邻里咖啡店或传统咖啡店(马来语:Kopitiam)是一种结合传统早餐和咖啡店的东南亚流行饮食文化,Kopitiam一词是结合马来语中的咖啡(kopi)和福建话中的店(白话字:tiàm)而成的混合词。典
  • 平太阳时太阳日(英语:solar day)是依据太阳运动,所定义的时间,可以分为视太阳日和平太阳日。一太阳日传统称为一“日”、一“天”或一“昼夜”。视太阳日(英语:apparent solar day)是依据真
  • 广东省人民代表大会常务委员会?年规定:印章直径?厘米,中央刊国徽,由?制发。广东省人民代表大会常务委员会是广东省人民代表大会的常设机构,于1979年12月29日根据第五届全国人民代表大会第二次会议所通过的《
  • 三山五园三山五园是指北京西北部的皇家园林群的统称。这些园林兴建于清康熙时期,兴盛于乾隆时期,大多在1860年第二次鸦片战争中被焚毁。有关三山五园的具体所指,目前比较通行的说法是,三
  • 四大佛教名山中国佛教四大名山,传说是四大菩萨的道场。浙江普陀山是观音菩萨的道场,山西五台山是文殊菩萨的道场,四川峨眉山是普贤菩萨的道场,安徽九华山为地藏菩萨道场。以上四处也合称“四
  • 人权捍卫者郁金香奖人权捍卫者郁金香奖(Human rights defenders tulip),由荷兰政府在2008年设立,获奖者可以是任何国家的人,但是他们的共同特点是,在捍卫和推动人权方面表现出超人的勇气。获奖者的奖
  • 树匐螈属 Huxley 1867树匐螈属(学名:)为已灭绝的离片椎目两栖类,栖息于石炭纪时期的新斯科舍与爱尔兰。它们的化石多半发现于鳞木属或封印木属化石的树洞之中,大部分的化石样本保存状况不
  • 开水小姐开水小姐(Miss Water),台湾网络游戏实况主、自称为歌手、代言人、主播,台中市出生,东吴大学法律系毕业。CD1CD2}