在相对论中,四维加速度是牛顿力学中三维加速度的对应推广,其为一个四维矢量。四维加速度应用于反质子湮灭反应、奇异粒子共振、加速电荷的辐射现象等研究领域中。
在狭义相对论的惯性坐标系中,四维加速度是物体的不变质量。
当四维力为零,则仅只重力现象影响物体的轨迹,与牛顿第二运动定律相应的四维矢量版本简化为测地线方程。依测地线移动的物体,其四维加速度为零;这表示重力其实不是一种力,而是受到扭曲的时空几何。相应地,在牛顿力学,重力被当作一种力,其作用以三维加速度处理。
非惯性坐标系,包括了狭义相对论中的加速坐标系以及广义相对论中的任意坐标系。在这样的坐标系情况下,四维加速度为四维速度对固有时的绝对导数:
惯性坐标系中,克里斯多福符号皆为零,所以此式还原成上一节的式子。
值得注意的是:克里斯多福符号是在采用直角坐标的惯性系中为零。若选用弯曲坐标系以描述加速运动,则克里斯多福符号不全为零。