在数学中,阶乘幂(英语:Factorial power)是基于自然数数列积的一种运算,分为递进阶乘(英语:Rising factorial)和递降阶乘(英语:Falling factorial),或称上升阶乘和下降阶乘,
递进阶乘与递降阶乘有多种书写方式。
由里奥·珀赫哈默尔(英语:Leo August Pochhammer)引进的珀赫哈默尔符号(Pochhammer symbol)是常用的一种,分别为 个连续整数的积,它定能被 整除,即
当 =4 ,递进阶乘与递降阶乘必定能表达为一个完全平方数减1,即
递进阶乘与递降阶乘遵从一个类似二项式定理的规则:
其中系数为二项式系数。
因为递降阶乘是多项式环的基础,我们可以将递降阶乘的积表示为递降阶乘的线性组合:
等式右边的系数则为二项式系数。
阶乘幂能一般化至任意函数和公差:
使用这个记号,原来的递进阶乘与递降阶乘便记作 和 。
差分方程里常使用递降阶乘。其应用与微积分学中的泰勒定理非常相似,不过将微分替换为对应的差分。只是在差分中,递降阶乘 替代微分中的 例如:
与
这种相似性在数学中称为亚微积分。亚微积分涵盖如多项式的二项式型和谢费尔序列。