笛卡尔坐标系

✍ dations ◷ 2025-04-25 13:43:31 #坐标系,勒内·笛卡尔,初等数学,维度

笛卡尔坐标系(英语:Cartesian coordinate system,也称直角坐标系)在数学中是一种正交坐标系,由法国数学家勒内·笛卡尔引入而有此名。二维的直角坐标系是由两条相互垂直、相交于原点的数线构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。

采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这个代数公式。例如:直线可以用标准式(一般式) a x + b y + c = 0 {\displaystyle ax+by+c=0} )。有关笛卡尔坐标系的研究,就是出现于《几何》这本书内。笛卡尔在坐标系这方面的研究结合了代数与欧几里得几何,对于后来解析几何、微积分、与地图学的建树,具有关键的开导力。

二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和 y-轴;两个坐标轴的相交点,称为原点,通常标记为O,既有“零”的意思,又是英语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地,x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对调的性质有关。

为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出离原点的负值整数距离。称x-轴刻画的数值为x-坐标,又称横坐标,称y-轴刻画的数值为y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为 ( x ,   y ) {\displaystyle (x,\ y)} , )。就是说,如果所有点的初始坐标是(, ),在平移之后它们的坐标将是:

要绕原点逆时针旋转一个图形 θ {\displaystyle \theta } ,)替代为坐标(,),这里有:

因此:

( x , y ) = ( ( x cos θ y sin θ ) , ( x sin θ + y cos θ ) ) . {\displaystyle (x',y')=((x\cos \theta -y\sin \theta \,),(x\sin \theta +y\cos \theta \,)).} , ),则(−, )是它跨第二坐标轴(y轴)的反射的坐标,如同这个线是个镜子。类似的,(, −)是它的跨第一个坐标轴(x轴)的反射的坐标。一般的说,跨过原点与x轴夹角为 θ {\displaystyle \theta } , )替代为坐标(′,′),这里有:

因此:

( x , y ) = ( ( x cos 2 θ + y sin 2 θ ) , ( x sin 2 θ y cos 2 θ ) ) . {\displaystyle (x',y')=((x\cos 2\theta +y\sin 2\theta \,),(x\sin 2\theta -y\cos 2\theta \,)).} 是一个2×2正交矩阵,而 = (1, 2)是任意的数值有序对;也就是:

这里的

将是正交的,矩阵必须有正交的有欧几里得长度1的行,就是:

并且:

这等价于说乘以它的转置矩阵必须是单位矩阵。如果这些条件不成立,则公式描述的是这个平面的更一般的仿射变换,假如的行列式不是零的话。

公式定义了平移,当且仅当是单位矩阵。变换是绕某个点的旋转,当且仅当是旋转矩阵,这意味着:

要得到反射或滑移反射需要:

假定不使用平移,变换可以通过简单将有关的变换矩阵相乘来组合起来。

表示笛卡尔坐标的坐标变换的另一种方式是通过仿射变换。在仿射变换中,增加了一个额外维度而所有点对这个额外维度给出数值1。这么做的好处是点平移可以在矩阵的最后列中指定。在这种方式下,所有欧几里得变换都可处理成矩阵点乘法。仿射变换给出为:

使用仿射变换,多个包括平移的不同欧几里得变换,可以简单的通过把它们对应的矩阵相乘而组合起来。

仿射变换的不是欧几里得移动的一个例子是缩放。要使一个图形变大或变小,等价于对所有点的笛卡尔坐标乘以同一个正数。如果最初图形的点的笛卡尔坐标是(, ),缩放后的图形的对应点有坐标:

如果大于1,图形变大;如果在0与1之间,图形变小。

错切变换将平压矩形的对边从而形成平行四边形。水平错切定义为:

垂直错切定义为:

直角坐标系的x-轴与y-轴必须相互垂直。称包含y-轴的直线为y-线。在二维空间里,当我们设定了x-轴的位置与方向的同时,我们也设定了y-线的方向。可是,我们仍旧必须选择,在y-线的以原点为共同点的两条半线中,哪一条半线的点的坐标是正值的,哪一条是负值的?任何一种选择决定了xy-平面的取向。

通常,我们选择的取向是,正值的x-轴横地指向右方,正值的y-轴纵地指向上方。这种取向称为正值取向、标准取向或右手取向。

右手定则是一种常用的记忆方法,专门用来辨认正值取向:将一只半握拳的右手放在平面上,大拇指往上指,那么,其它的手指都从x-轴指向y-轴。

另外一种取向,采用左手定则,专门用来辨认负值取向或左手取向:将一只半握拳的左手放在xy-平面上,大拇指往上指,那么,其它的手指都从y-轴指向x-轴。

不论坐标轴是何种取向,将坐标系统做任何角度的旋转,取向仍旧会保持不变。

直角坐标系的x-轴、y-轴与z-轴必须相互垂直。称包含z-轴的直线为z-线。在三维空间里,当我们设定了x-轴、y-轴的位置与方向的同时,我们也设定了z-线的方向。可是,我们仍旧必须选择,在z-线以原点为共同点的两条半线中,哪一条半线的点的坐标是正值的,哪一条是负值的?这两种不同的坐标系统,称为右手坐标系与左手坐标系。右手坐标系又称为标准坐标系或正值坐标系。

右手坐标系这名词是由右手定则而来的。先将右手的手掌与手指伸直,然后将中指指向往手掌的掌面半空间,与食指呈直角关系。再将大拇指往上指去,与中指、食指都呈直角关系。则大拇指、食指与中指分别表示了右手坐标系的x-轴、y-轴与z-轴。同样地,用左手也可以表示出左手坐标系。

左侧示意图展示出一个左手坐标系与一个右手坐标系。因为我们用二维画面来展示三维物体,会造成扭曲或模棱两可的图形。指向下方与右方的轴,也有指向读者的意思;而位置居于中间的轴,也有指向读者正在看的方向的意思。平行于xy-平面的红色圆形曲箭,其红色箭头从z-轴前面经过,表示从x-轴往y-轴的旋转方向。

采用直角坐标系,在三维空间里,任何一点P都可以用向量来表示。我们可以想像向量为一支羽箭,其箭尾在原点,箭锋在点P。假若点P的向量是 r {\displaystyle \mathbf {r} } ,直角坐标是 ( x , y , z ) {\displaystyle (x,y,z)} 。那么,

其中,单位向量 i ^ {\displaystyle {\hat {\mathbf {i} }}} j ^ {\displaystyle {\hat {\mathbf {j} }}} k ^ {\displaystyle {\hat {\mathbf {k} }}} 分别指向x-轴,y-轴,与z-轴指向的正无穷值方向。

相关

  • 特鲁顿规则特鲁顿规则(英语:Trouton's rule)是指不同种类液体的汽化熵(英语:entropy of vaporization) Δ
  • 瓶尔小草科瓶尔小草科(学名:Ophiogiossaceae)是一种蕨类。有着由孢子囊形成的短寿型孢子,诞生于和叶片分开的叶柄上;以及肥大的根。许多物种一年只会长成一片蕨叶。而有少数的物种只有能生
  • 辛丑和约《辛丑条约》,亦称《辛丑各国和约》、《北京议定书》,是大清与英国、美国、日本、俄罗斯、法国、德国、意大利、奥匈、比利时、西班牙和荷兰十一国在义和团运动结束、八国联军
  • 巴哼语巴哼语是中国湘黔桂三省交界处贵州、广西一侧自称“巴哼”(.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Uni
  • 唐庚唐庚(1071年-1121年),字子西,眉州丹棱(今四川眉山市丹棱县))人。唐庚是哲宗绍圣元年(1094年)进士,利州司法参军,为宰相张商英所赏识。绍圣四年(1110年),除京畿路提举常平。张商英罢相后,被贬
  • 加地夫加的夫(英语:Cardiff;威尔士语:Caerdydd)是威尔士的首府和最大城市,也是英国第十六大城市。威尔士国民议会所在地。人口约519,700,面积190平方公里。加的夫在威尔士语中意为塔夫河
  • 韩广韩广(?-前205年),秦朝人,曾任上谷郡卒史,在秦末民变时自立为燕王。大泽之变时,原是陈胜部下将领,后随武臣攻打赵国,武臣自立为赵王。前209年奉赵王武臣之命进攻燕地,攻下之后,燕国当地的
  • 邓小平时代邓小平时代可以指:
  • 航空母舰战斗群航空母舰战斗群(英语:carrier battle group,缩写为CVBG、CVSG或CARBATGRU)是一支以航空母舰为首的作战舰队。这种舰队绝大部分由美国海军所拥有,是美国力量投射能力的重要部分。
  • 搜狗输入法搜狗输入法泛指搜狗公司推出的输入法工具。