完美图定理

✍ dations ◷ 2025-04-04 11:23:39 #图论,完美图

在图论中,完美图定理(由洛瓦兹·拉兹洛证明László Lovász (1972a, 1972b))断言:一个无向图是完美的当且仅当其补图也是完美的。这个结论一度是Claude Berge(英语:Claude Berge)提出的猜想。它有时也被称为弱完美图定理,以和强完美图定理作区分。强完美图定理通过禁止导出子图来刻画完美图。

一个完美图是具有下述性质的无向图:在其每个导出子图中,最大团的顶点数都等于对该导出子图的着色的颜色数的最小值。完美图包括了很多重要类型的图,例如二分图、弦图和可比图(英语:comparability graph)。

一个图的补图在某两个顶点之间连一条边当且仅当原图在这两个顶点之间没有连边。从而原图中的团成为其补图中的独立集,而原图的一个染色成为其补图的一个团覆盖。

完美图定理断言:完美图的补图也是完美的。

等价地,在完美图中,最大独立集的顶点数等于其团覆盖中团个数的最小值。

令是一个长度为大于3的奇数的循环图(洞),则G的任何染色需要至少3种颜色,但G不含有三角形,所以它不是完美的。由完美图定理,G的补图(一个奇数长度的反洞)肯定也不是完美的。如果G是一个长度为5的圈,则它是一个自补图(英语:Self-complementary graph),但此性质对更大的奇数长度不再成立,而对于奇数个顶点的反洞计算其团数和色数也不像对于奇数个顶点的循环图那么容易。强完美图定理指出,奇数长度的洞和反洞是完美图的最小的禁止导出子图。

在一个非平凡的二分图中,由定义染色所需的颜色数最小是2,而由于二分图中不含有三角形,其团数也是2。而二分图的任何导出子图还是二分图。所以二分图是完美的。在有n个顶点的二分图中,一个最小团覆盖需要一个最大匹配加上另一些团,每个对应于一个未匹配顶点,其中团的个数等于n-M,这里M是最大匹配的边数。于是在这个例子中完美图定理可以推出柯尼希定理 (图论),即有n个顶点的二分图的最大独立集的顶点数也是n-M

Chudnovsky等人(2006)得到的强完美图定理断言一个图是完美的当且仅当其所有导出子图和它们的补图都不是长度为大于等于5的奇数的循环图。由于此条件在取补图后不变,强完美图定理可以直接推出(弱)完美图定理。

Cameron, Edmonds & Lovász(1986)证明,如果一个完全图的所有边被分成三个导出子图,使得任何三个顶点都在其中一个导出子图中连通,且两个导出子图是完美的,则第三个导出子图必然也是完美的。完美图定理是这个结果在其中一个导出子图是空图时的特例。

相关

  • 放线菌门放线菌(Actinobacteria)是一类革兰氏阳性细菌,可栖息于水中或陆地上,虽然一开始被认定为土壤菌,但淡水中的种类可能比陆地上的更丰富,它们具有分支的纤维和孢子,依靠孢子繁殖,表面上
  • 国际经济学国际经济学,是经济学的一门分支学科,主要探讨在跨国的经济活动中,生产与消费的循环过程。此学科以宏观的角度,则是着重于各国之间的贸易、投资与移民议题分析。其分支研究为国际
  • 弗朗西斯科·维多利亚弗朗西斯科·维多利亚(Francisco de Vitoria, Francisci de Victoria,(1480年-1546年))西班牙神学家,萨拉曼卡学派始祖。
  • 中频电疗中频电疗(Middle frequency electrotherapy)是属于物理治疗中电刺激治疗方法的一种。由于这种治疗的方法使用的是频率介于1kHz至10kHz的干扰电流刺激,故命名为中频电疗。由于治
  • ؋ ​₳ ​ ฿ ​₿ ​ ₵ ​¢ ​₡ ​₢(英语:Brazilian cruzeiro) ​ $ ​₫ ​₯ ​֏ ​ ₠ ​€ ​ ƒ(英语:Florin sign) ​₣ ​ ₲ ​ ₴(英语:Hryvnia sign) ​ ₭ ​ ₺
  • F/A-18黄蜂式战斗攻击机48.9千牛顿(11,000英磅力)(军用推力)78.7千牛顿(17,700英磅力)(后燃推力) 57.8千牛顿(13,000英磅力)(军用推力)麦克唐纳-道格拉斯F/A-18大黄蜂式战斗攻击机(英语:McDonnell Douglas F/A-1
  • 虹鳟见内文Salmo mykiss Walbaum, 1792 Parasalmo mykiss (Walbaum, 1792) Salmo purpuratus Pallas, 1814 Salmo penshinensis Pallas, 1814 Parasalmo penshinensis (Pallas,
  • 阿卜杜勒-阿齐兹·布特弗利卡阿卜杜勒-阿齐兹·布特弗利卡(阿拉伯语:عبد العزيز بوتفليقة‎,法语:Abdelaziz Bouteflika,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos
  • 中国学科分类国家标准/110110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学 210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 无限地带23《无限地带23》(MEGAZONE 23、メガゾーンツースリー)是1985年3月9日发售的日本OVA作品。PART I发售于1985年3月9日,同年3月23日于影院上映;PART II 告诉我你的秘密(秘密く·だ·