商群

✍ dations ◷ 2025-02-24 10:14:03 #群论

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,商群或因子群是通过保持群结构的等价关系来把较大群中的类似元素聚类而产生的群。给定一个群和的正规子群,在上的商群或因子群,在直觉上是把正规子群“萎缩”为单位元的群。商群写为/并念作 mod (是模的简写)。如果不是正规子群,商仍可得到,但结果将不是群,而是齐次空间。

在随后的讨论中,我们将使用在的子集上的二元运算:如果给出的两个子集和,我们定义它们的乘积为 = {  : ∈并且∈ }。这个运算是符合结合律的并有单位元为单元素集合{},这里的是的单位元。因此,的所有子集的集合形成了在这个运算下的幺半群。

凭借这个运算我们可以首先解释商群是什么,并接着解释正规子群是什么:

它完全由包含的子集所确定。的正规子群是在任何这种划分中包含的集合。在划分中的子集是这个正规子群的陪集。

群的子群是正规子群,当且仅当陪集等式 = 对于所有中的都成立。依据上述定义的在子集上的二元运算,的正规子群是交换于的所有子集的子群,并指示为 ⊲ 。排列于的所有子群的子群叫做可排列子群。

设是群的正规子群。我们定义集合/是在中的所有左陪集的集合,就是说/ = {  : ∈ }。在/上的群运算定义如上。换句话说,对于每个/中和,和的乘积是 ()()。这个运算是闭合的,因为 ()()实际上是左陪集:

的正规性被用在了这个等式中。因为的正规性,在中的左陪集和右陪集是相等的,所以/也可以定义为在中所有的右陪集的集合。因为运算是从的子集的乘积得出的,这个运算是良好定义的(不依赖于表示的特定选择),符合结合律的,并有单位元。/的元素的逆元是−1。

/叫做商群的理由来自整数的除法。在12除以3的时候得到答案4是因为我们可以把12个对象重新分组为3个对象的4个子搜集。商群出于同样想法,但用一个群作为最终答案而非一个数,因为群要比对象的随机搜集要更有结构。

更细致的说,在查看/而是的正规子群的时候,这个群结构形成一种自然“重新分组”。它们是在中陪集。因为我们从一个群和正规子群得到的最终的商包含比只是陪集的(正常除法所产生的)数目要更多的信息,这里得到了一个群结构自身。

商群 / 同构于平凡群(只有一个元素的群),而 / {}同构于。

的阶定义为等于,它是在中的子群的指标(index)。如果是有限的,这个指标还等于的阶除以的阶。注意可以在和二者是无限的时候是有限的(比如Z 2Z)。

有一个“自然”满射群同态 : → / ,把每个的元素映射到所属于的的陪集上,也就是:() = 。映射有时叫做“G到G / N上的规范投影”。它的核是。

在包含的的子群和 / 的子群之间有一个双射映射;如果是包含的的子群,则对应的的子群是()。这个映射对于的正规子群和 / 也成立,并在格定理中形式化。

商群的一些重要性质记录在同态基本定理和同构基本定理中。

如果是阿贝尔群、幂零群或可解群,则 / 也是。

如果是循环群或有限生成群,则 / 也是。

如果被包含在的中心内,则也叫做这个商群的中心扩张。

如果是在有限群中的子群,并且的阶是的阶的一半,则保证是正规子群,因此 / 存在并同构于2。这个结果还可以陈述为“任何指标为2的子群都是正规子群”,并且它的这种形式还适用于无限群。

所有群都同构于一个自由群的商。

有时但非必然的,群可以从 / 和重构为一个直积或半直积。判定何时成立的问题叫做扩张问题。不成立的一个例子如下。Z4 / { 0, 2 }同构于Z2,并且还同构于{ 0, 2 },但是唯一的半直积是直积,因为Z2只有一个平凡的自同构。所以Z4不同于Z2 × Z2,它不能被重构。

相关

  • 尤西弗罗困境游叙弗伦困境(Euthyphro Dilemma)源自柏拉图的《游叙弗伦篇》。中苏格拉底与尤西弗罗的对话,可简述如下:上述两个说法只能取其一。如果取1,那么好的事物也可以是坏的,只要上帝如此
  • 联合国中文日联合国中文日(英语:UN Chinese Language Day)是联合国发起,在每年4月20日举行的纪念活动。联合国中文日是联合国在2010年所提出,目的是为了“庆祝多种语言以及文化的多样性,也提倡
  • 约书亚·博尔顿乔舒亚·布鲁斯特·博尔滕(英语:Joshua Brewster Bolten,1954年8月16日-),美国律师、政治家,前白宫幕僚长。博尔滕的父亲西摩迩,为美国中央情报局工作;母亲安娜路易丝在乔治华盛顿大
  • 传统媒体传统媒体是平面媒体,这里的平面最初起源于广告界。因为报纸、杂志上的广告都是平面广告。传统媒体是相对于近几年兴起的网络媒体而言的,以传统的大众传播方式即通过某种机械装
  • 缩放在欧几里得几何中,均匀缩放是放大或缩小物体的线性变换;缩放因子在所有方向上都是一样的;它也叫做位似变换。均匀缩放的结果相似(在几何意义上)于原始的物体。更一般的是在每个坐
  • 褶皱山褶皱是层状岩石受力后形成的波状弯曲。绝大多数的层状岩石是由堆积在盆地、海岸的平坦水平成层的沉积物形成,如隆升出露地面,形成水平岩层。褶皱有两种基本类型:褶皱的形成与受
  • 布拉德拉龙卷风布拉德拉龙卷风是一场强烈的龙卷风,在1970年1月1日发生在新南威尔士州布拉德拉镇附近。并且被认为是澳大利亚有史以来最具破坏性的龙卷风 。人们认为在藤田级数上至少有F4或F
  • X战警系列电影演员列表本列表为X战警电影系列演员列表,记述电影出现过的变种人及在电影中使用过的超能力。角色及其拥有的超能力,如下:{在漫画及动画 的角色定为 并非邪恶 而是与X教授经营不同理念为
  • 德拉戈斯拉夫·马尔科维奇德拉戈斯拉夫·马尔科维奇(英语:Dragoslav "Draža" Marković;塞尔维亚语:Драгослав Дража Марковић;1920年6月28日-2005年4月20日),塞尔维亚族,是南斯拉夫的
  • 弹珠台弹珠台(英语:Pinball)是由雷蒙·莫洛尼于公元1934年所发明,是一种投币式街机,利用金属球与机械进行游戏。后来也演变成为了一种电脑游戏。最早期的弹珠台通常是一个矩形的木制框