首页 >
菲涅耳方程
✍ dations ◷ 2025-05-15 19:03:16 #菲涅耳方程
菲涅耳方程(或称菲涅耳条件)是由法国物理学家奥古斯丁·菲涅耳推导出的一组光学方程,用于描述光在两种不同折射率的介质中传播时的反射和折射。方程中所描述的反射因此还被称作“菲涅耳反射”。当光从一种折射率为
n
1
{displaystyle n_{1},}
的介质向另一种折射率为
n
2
{displaystyle n_{2},}
的介质传播时,在两者的交界处(通常称作界面)可能会同时发生光的反射和折射。菲涅尔方程描述了光波的不同分量被折射和反射的情况,也描述了波反射时的相变。方程成立的条件是:界面是光滑平面,入射光是平面波,边际效应可被忽略。计算结果取决于入射光的偏振态。以下是两种情况(由于电场分量、磁场分量、光的传播方向由右手螺旋关系确定,所以仅讨论电场方向的偏振)在右图中,入射光线PO到达两种介质交界面上的点O时,部分光线被反射,反射光为OQ,而另一部分被折射,折射光为OS。定义入射光线、反射光线和折射光线各自与法线形成的夹角分别为
θ
i
{displaystyle theta _{i},}
、
θ
r
{displaystyle theta _{r},}
和
θ
t
{displaystyle theta _{t},}
。入射光线与反射光线的方向由反射定律约束:θ
i
=
θ
r
{displaystyle theta _{mathrm {i} }=theta _{mathrm {r} }}入射光线与折射光线的方向由斯涅尔定律约束:sin
θ
i
sin
θ
t
=
n
2
n
1
{displaystyle {frac {sin theta _{mathrm {i} }}{sin theta _{mathrm {t} }}}={frac {n_{2}}{n_{1}}}}一定功率的入射光被界面反射的比例称为反射比
R
{displaystyle R,}
;折射的比例称为透射比
T
{displaystyle T,}
。对反射比和透射比的计算需要用到电动力学中的电磁波传播理论,具体方法可参考玻恩的《光学原理:光的传播、干涉和衍射的电磁理论》以及杰克逊的《经典电动力学》。反射比和透射比的具体形式还与入射光的偏振有关。如果入射光的电矢量垂直于右图所在平面(即s偏振),反射比为其中
θ
t
{displaystyle theta _{t},}
是由斯涅尔定律从
θ
i
{displaystyle theta _{i},}
导出的,并可用三角恒等式化简。如果入射光的电矢量位于右图所在平面内(即p偏振),反射比为透射比无论在哪种情况下,都有
T
=
1
−
R
{displaystyle T=1-R,}
。如果入射光是无偏振的(含有等量的s偏振和p偏振),反射比是两者的算数平均值:
R
=
R
s
+
R
p
2
{displaystyle R={frac {R_{s}+R_{p}}{2}},}
。反射和折射光波的振幅与入射光波振幅的比值(通常称为反射率和透射率)也可用类似的方程给出,这些方程也称作菲涅耳方程。根据不同的体系和符号习惯,它们可以有不同形式。反射率和透射率通常用小写的
r
{displaystyle r,}
和
t
{displaystyle t,}
表示。在某些体系中,它们满足条件:对于给定的折射率
n
1
{displaystyle n_{1},}
和
n
2
{displaystyle n_{2},}
且入射光为p偏振光时,当入射角为某一定值时
R
p
{displaystyle R_{p},}
为零,此时p偏振光被完全透射而无反射光出射。这个角度被称作布儒斯特角,对于空气或真空中的玻璃介质约为56°。注意这个定义只是对于两种折射率都为实数的介质才有意义,对于会吸光的物质,例如金属和半导体,折射率是一个复数,从而
R
p
{displaystyle R_{p},}
一般不为零。当光从光密介质向光疏介质传播时(即
n
1
>
n
2
{displaystyle n_{1} >n_{2},}
时),存在一个临界的入射角,对于大于此入射角的入射光
R
s
=
R
p
=
1
{displaystyle R_{s}=R_{p}=1,}
,此时入射光完全被界面反射。这种现象称作全内反射,临界角被称作全反射临界角,对于空气中的玻璃约为41°。当光线以近法线入射(
θ
i
≈
θ
t
≈
0
{displaystyle theta _{i}approx theta _{t}approx 0,}
)时,反射比和透射比分别为:对于普通的玻璃,反射比大约为4%。注意窗户对光波的反射包括前面一层以及后面一层,因而少量光波会在两层之间来回振荡形成干涉。如忽略这种干涉效应,这两层合并后的反射比为
2
R
1
+
R
{displaystyle {frac {2R}{1+R}},}
(见下)。需要指出的是这里所有的讨论都假设介质的磁导率
μ
{displaystyle mu ,}
都等于真空磁导率
μ
0
{displaystyle mu _{0},}
。对于大多数电介质而言这是近似正确的,但对其他类型的物质来说不正确,因而若考虑这一点则菲涅耳方程的形式会更加复杂。当光在两层以上平行表面发生多重反射时,多列反射光波往往会互相发生干涉,从而有可能会使系统总的透射光和反射光振幅表达起来相当复杂,这通常是波长(或频率)的函数。一个例子是漂浮在水面上的油膜,在光照下会产生多种色彩;其他例子还包括法布里-珀罗干涉仪、透镜等光学仪器表面所用的能极大降低反射率的镀膜(增透膜),以及各种光学滤波器。对这些效应的定量计算仍然是基于菲涅耳方程的,但也要考虑额外产生的干涉所带来的影响,通常可以采用光学中的传递矩阵方法来计算这些问题。
相关
- 灵长目源性灵长目(学名:Primates)是哺乳纲的一个目,在生物分类学上,可以再细分原猴及简鼻亚目(包括人)。灵长目的始祖住在热带雨林的树上,许多灵长目的特征表现了其适应三维立体环境的能力,大部
- 汉诺威汉诺威(德语:Hannover)位于莱讷河畔,德国下萨克森州的首府,位于北德平原和中德山地的相交处,既处于德国南北和东西铁路干线的交叉口,又濒临中德运河,是个水陆辐辏的交通枢纽。汉诺威
- 鼻音 (辅音)鼻音是按发音方法分类的一类辅音。发音时,口腔中的气流通路被阻塞,软颚下垂,气流通过鼻腔,与气流从口腔流出的口腔辅音相对。 (少数的挤喉音可能同时具有口腔辅音与鼻音的性质。)
- 楔形文字幼发拉底河 · 底格里斯河乌鲁克 · 乌尔 · 埃利都 启什 · 拉格什 · 尼普尔 阿卡德帝国 · 库提 乌尔第三王朝 · 伊辛第一王朝 · 拉尔萨 · 伊辛第二王朝古巴比
- 物理学定律列表物理学定律列表列出了各项物理范畴的所有条定律,包括力学、热学、光学等等。
- 上新世上新世(英语:Pliocene)是地质时代中新近纪的最新的一个世,它从距今530万年开始,距今260万年结束。上新世前是中新世,其后是更新世。如同其它许多比较老的地质时代,上新世与其它相邻
- 分子钟分子钟(英语:Molecular clock),也叫基因钟、演化钟,是一个比喻性术语。是一种根据生物大分子的突变率推断两个或多个生物在演化历史上分离的时间的技术。计算时间所采用的生物大
- 音高音高(英语:pitch)在音乐领域里指的是人类心理对音符基频之感受。虽然不同乐器的频谱不同,但任何乐器演奏中央区的A音符基频皆为440Hz,因此所感受之音高皆同。此外,即使频率有些许
- 血小板计数血小板(英语:platelet),也称血栓细胞(英语:thrombocytes,源自于希腊语的θρόμβος“凝块”以及κύτος“细胞”),为血液的一个组成部分,可与凝血因子一起,借由结块作用,对血管受
- 匸匸部,就汉字索引来说,是为部首之一,康熙字典214个部首中的第二十三个(两划的则为第十七个)。就繁体中文中,匸部归于两划部首。匸部通常是从上左下包围部分为部字,且无其他部首可用