菲涅耳方程

✍ dations ◷ 2024-11-05 19:28:29 #菲涅耳方程
菲涅耳方程(或称菲涅耳条件)是由法国物理学家奥古斯丁·菲涅耳推导出的一组光学方程,用于描述光在两种不同折射率的介质中传播时的反射和折射。方程中所描述的反射因此还被称作“菲涅耳反射”。当光从一种折射率为 n 1 {displaystyle n_{1},} 的介质向另一种折射率为 n 2 {displaystyle n_{2},} 的介质传播时,在两者的交界处(通常称作界面)可能会同时发生光的反射和折射。菲涅尔方程描述了光波的不同分量被折射和反射的情况,也描述了波反射时的相变。方程成立的条件是:界面是光滑平面,入射光是平面波,边际效应可被忽略。计算结果取决于入射光的偏振态。以下是两种情况(由于电场分量、磁场分量、光的传播方向由右手螺旋关系确定,所以仅讨论电场方向的偏振)在右图中,入射光线PO到达两种介质交界面上的点O时,部分光线被反射,反射光为OQ,而另一部分被折射,折射光为OS。定义入射光线、反射光线和折射光线各自与法线形成的夹角分别为 θ i {displaystyle theta _{i},} 、 θ r {displaystyle theta _{r},} 和 θ t {displaystyle theta _{t},} 。入射光线与反射光线的方向由反射定律约束:θ i = θ r {displaystyle theta _{mathrm {i} }=theta _{mathrm {r} }}入射光线与折射光线的方向由斯涅尔定律约束:sin ⁡ θ i sin ⁡ θ t = n 2 n 1 {displaystyle {frac {sin theta _{mathrm {i} }}{sin theta _{mathrm {t} }}}={frac {n_{2}}{n_{1}}}}一定功率的入射光被界面反射的比例称为反射比 R {displaystyle R,} ;折射的比例称为透射比 T {displaystyle T,} 。对反射比和透射比的计算需要用到电动力学中的电磁波传播理论,具体方法可参考玻恩的《光学原理:光的传播、干涉和衍射的电磁理论》以及杰克逊的《经典电动力学》。反射比和透射比的具体形式还与入射光的偏振有关。如果入射光的电矢量垂直于右图所在平面(即s偏振),反射比为其中 θ t {displaystyle theta _{t},} 是由斯涅尔定律从 θ i {displaystyle theta _{i},} 导出的,并可用三角恒等式化简。如果入射光的电矢量位于右图所在平面内(即p偏振),反射比为透射比无论在哪种情况下,都有 T = 1 − R {displaystyle T=1-R,} 。如果入射光是无偏振的(含有等量的s偏振和p偏振),反射比是两者的算数平均值: R = R s + R p 2 {displaystyle R={frac {R_{s}+R_{p}}{2}},} 。反射和折射光波的振幅与入射光波振幅的比值(通常称为反射率和透射率)也可用类似的方程给出,这些方程也称作菲涅耳方程。根据不同的体系和符号习惯,它们可以有不同形式。反射率和透射率通常用小写的 r {displaystyle r,} 和 t {displaystyle t,} 表示。在某些体系中,它们满足条件:对于给定的折射率 n 1 {displaystyle n_{1},} 和 n 2 {displaystyle n_{2},} 且入射光为p偏振光时,当入射角为某一定值时 R p {displaystyle R_{p},} 为零,此时p偏振光被完全透射而无反射光出射。这个角度被称作布儒斯特角,对于空气或真空中的玻璃介质约为56°。注意这个定义只是对于两种折射率都为实数的介质才有意义,对于会吸光的物质,例如金属和半导体,折射率是一个复数,从而 R p {displaystyle R_{p},} 一般不为零。当光从光密介质向光疏介质传播时(即 n 1   > n 2 {displaystyle n_{1} >n_{2},} 时),存在一个临界的入射角,对于大于此入射角的入射光 R s = R p = 1 {displaystyle R_{s}=R_{p}=1,} ,此时入射光完全被界面反射。这种现象称作全内反射,临界角被称作全反射临界角,对于空气中的玻璃约为41°。当光线以近法线入射( θ i ≈ θ t ≈ 0 {displaystyle theta _{i}approx theta _{t}approx 0,} )时,反射比和透射比分别为:对于普通的玻璃,反射比大约为4%。注意窗户对光波的反射包括前面一层以及后面一层,因而少量光波会在两层之间来回振荡形成干涉。如忽略这种干涉效应,这两层合并后的反射比为 2 R 1 + R {displaystyle {frac {2R}{1+R}},} (见下)。需要指出的是这里所有的讨论都假设介质的磁导率 μ {displaystyle mu ,} 都等于真空磁导率 μ 0 {displaystyle mu _{0},} 。对于大多数电介质而言这是近似正确的,但对其他类型的物质来说不正确,因而若考虑这一点则菲涅耳方程的形式会更加复杂。当光在两层以上平行表面发生多重反射时,多列反射光波往往会互相发生干涉,从而有可能会使系统总的透射光和反射光振幅表达起来相当复杂,这通常是波长(或频率)的函数。一个例子是漂浮在水面上的油膜,在光照下会产生多种色彩;其他例子还包括法布里-珀罗干涉仪、透镜等光学仪器表面所用的能极大降低反射率的镀膜(增透膜),以及各种光学滤波器。对这些效应的定量计算仍然是基于菲涅耳方程的,但也要考虑额外产生的干涉所带来的影响,通常可以采用光学中的传递矩阵方法来计算这些问题。

相关

  • 便秘便秘是指因粪便会太硬或是太干而排便不顺或难以排出的状况。一般而言,正常排便的频率约在每日三次到每周三次之间,便秘的并发症包含痔疮、肛裂、粪便阻塞。不同患者对便秘的描
  • 基洛夫州基洛夫州(俄语:Кировская область,罗马化:Kirovskaya oblast)位于东欧平原东部,属伏尔加联邦管区,是俄罗斯联邦主体之一,同时为“伏尔加-维亚特经济区”成员之一(参
  • 生物工程生物工程学(Biological Engineering或bioengineering),是一种即综合利用数学、物理学、化学、生物学的知识,以及工程学本身的方法,以应对在生物学及医药学等领域等各种问题,满足人
  • 杜兴氏肌肉营养不良症杜兴氏肌肉营养不良症(Duchenne Muscular Dystrophy,缩写DMD)是一种相当严重的性联遗传肌肉失养症。男性病患大约在4岁开始就会产生肌肉无力(英语:Muscle weakness)的症状,此后症状
  • 子宫颈粘液子宫颈(cervix、cervix uteri)是子宫底部狭窄的开口。连接阴道。形状是圆柱形或圆锥形。突出于阴道壁的前上方。子宫颈大约有一半长度可透过适当医学仪器看见。子宫颈伸入阴道
  • 名称拉丁化拉丁化(英语:Latinisation)指将非拉丁文的姓名或名称改为拉丁文的作法。在罗马帝国时期,以及于欧洲中古世纪,欧洲及地中海区通行拉丁文,当时习惯将个人姓名或地名等名称由当地语言
  • 痕迹器官痕迹器官(vestigial organ),是指生物经过进化后为了适应环境,较不需要的器官会渐渐退化,直到失去功能(英语:Function_(biology))。但仍残存在生物体可作为生物演化的证据。以下列出
  • 人类文化遗产世界遗产(英语:World Heritage;法语:Patrimoine mondial),是一项由联合国支持、联合国教育科学文化组织负责执行的国际公约建制,以保存对全世界人类都具有杰出普遍性价值的自然或文
  • 生物降解塑料生物可分解塑胶是可以在自然界降解的塑胶材质。在有足够的湿度、氧气与适当微生物存在的自然掩埋或堆肥环境中,可被微生物所代谢分解产生水和二氧化碳或甲烷,对环境危害较小。
  • 钱百敦钱百敦(英语:Britton Chance,1913年7月24日-2010年11月16日),本名布立顿·强斯,美国科学家,宾夕法尼亚大学医学院物理化学与辐射物理学荣休教授,埃尔德里奇·里夫斯·约翰逊(Eldridge