逆威沙特分布

✍ dations ◷ 2025-11-04 22:56:39 #连续分布,多变量统计


逆威沙特分布,也叫反威沙特分布作是统计学中出现的一类概率分布函数,定义在实值的正定矩阵上。在贝叶斯统计中,逆威沙特分布会用作多变量正态分布协方差矩阵的共轭先验分布。如果一个正定矩阵 B {\displaystyle {\mathbf {B} }} (·) 则是多变量伽马分布(英语:Multivariate gamma function)。函数

指的是迹函数。

设矩阵 A W ( Σ , m ) {\displaystyle {\mathbf {A} }\sim W({\mathbf {\Sigma } },m)} 并且 Σ {\displaystyle {\mathbf {\Sigma } }} p × p {\displaystyle p\times p} 的矩阵,那么 B = A 1 {\displaystyle {\mathbf {B} }={\mathbf {A} }^{-1}} 遵从逆威沙特分布: B W 1 ( Σ 1 , m ) {\displaystyle {\mathbf {B} }\sim W^{-1}({\mathbf {\Sigma } }^{-1},m)} 。它的概率密度函数是:

其中 Ψ = Σ 1 {\displaystyle \mathbf {\Psi } =\mathbf {\Sigma } ^{-1}} ,而 Γ p ( ) {\displaystyle \Gamma _{p}(\cdot )} 是多变量伽马分布。

设矩阵 A W 1 ( Ψ , m ) {\displaystyle {\mathbf {A} }\sim W^{-1}({\mathbf {\Psi } },m)} 遵从逆威沙特分布。并且假设矩阵 A {\displaystyle {\mathbf {A} }} Ψ {\displaystyle {\mathbf {\Psi } }} 都有相适合的分块矩阵表示方式:

其中子矩阵 A i j {\displaystyle {\mathbf {A} _{ij}}} Ψ i j {\displaystyle {\mathbf {\Psi } _{ij}}} p i × p j {\displaystyle p_{i}\times p_{j}} 的矩阵,那么会有:

甲) A 11 {\displaystyle {\mathbf {A} _{11}}} A 11 1 A 12 {\displaystyle {\mathbf {A} }_{11}^{-1}{\mathbf {A} }_{12}} A 22 1 {\displaystyle {\mathbf {A} }_{22\cdot 1}} 相互独立,其中 A 22 1 = A 22 A 21 A 11 1 A 12 {\displaystyle {\mathbf {A} _{22\cdot 1}}={\mathbf {A} }_{22}-{\mathbf {A} }_{21}{\mathbf {A} }_{11}^{-1}{\mathbf {A} }_{12}} 是子矩阵 A 11 {\displaystyle {\mathbf {A} _{11}}} A {\displaystyle {\mathbf {A} }} 中的舒尔补。

乙) A 11 W 1 ( Ψ 11 , m p 2 ) {\displaystyle {\mathbf {A} _{11}}\sim W^{-1}({\mathbf {\Psi } _{11}},m-p_{2})} ;

丙) A 11 1 A 12 | A 22 1 M N p 1 × p 2 ( Ψ 11 1 Ψ 12 , A 22 1 Ψ 11 1 ) {\displaystyle {\mathbf {A} }_{11}^{-1}{\mathbf {A} }_{12}|{\mathbf {A} }_{22\cdot 1}\sim MN_{p_{1}\times p_{2}}({\mathbf {\Psi } }_{11}^{-1}{\mathbf {\Psi } }_{12},{\mathbf {A} }_{22\cdot 1}\otimes {\mathbf {\Psi } }_{11}^{-1})} ,其中 M N p × q ( , ) {\displaystyle MN_{p\times q}(\cdot ,\cdot )} 是矩阵正态分布。

丁) A 22 1 W 1 ( Ψ 22 1 , m ) {\displaystyle {\mathbf {A} }_{22\cdot 1}\sim W^{-1}({\mathbf {\Psi } }_{22\cdot 1},m)}

假设要求先验分布 p ( Σ ) {\displaystyle {p(\mathbf {\Sigma } )}} 为逆威沙特分布 W 1 ( Ψ , m ) {\displaystyle W^{-1}({\mathbf {\Psi } },m)} 的协方差矩阵 Σ {\displaystyle {\mathbf {\Sigma } }} 。如果观测值 X = {\displaystyle \mathbf {X} =} 是从互相独立的 p-变量正态分布 N ( 0 , Σ ) {\displaystyle N(\mathbf {0} ,{\mathbf {\Sigma } })} 的随机变量得到的,那么条件分布 p ( Σ | X ) {\displaystyle {p(\mathbf {\Sigma } |\mathbf {X} )}} 遵从的是逆威沙特分布: W 1 ( A + Ψ , n + m ) {\displaystyle W^{-1}({\mathbf {A} }+{\mathbf {\Psi } },n+m)} 。其中 A = X X T {\displaystyle {\mathbf {A} }=\mathbf {X} \mathbf {X} ^{T}} 是样本协方差矩阵的 n {\displaystyle n} 倍。

因此,逆威沙特矩阵是多变量正态分布的共轭先验分布。

期望值::85

矩阵 B {\displaystyle \mathbf {B} } 的每一个系数的方差:

对角系数的方差是在上式中令 i = j {\displaystyle i=j} 得到,化简后变成:

当变量数目减到一个的时候,逆威沙特分布会变成特例:逆伽马分布(英语:Inverse-gamma distribution)。也就是说,当 p = 1 {\displaystyle p=1} α = m / 2 {\displaystyle \alpha =m/2} β = Ψ / 2 {\displaystyle \beta =\mathbf {\Psi } /2} 以及 x = B {\displaystyle x=\mathbf {B} } 的时候,逆威沙特分布的概率密度函数是:


这正是逆伽马分布。其中 Γ 1 ( ) {\displaystyle \Gamma _{1}(\cdot )} 是通常的伽马函数。


而逆威沙特分布也有推广,其中一个是正态逆威沙特分布(英语:Normal-inverse-Wishart distribution)。

相关

  • 行人隧道地下人行通道是土木工程、交通、建筑物、隧道的一种,作用是供行人通过,解决在地面人车争路的问题。地下人行通道多数出现于大城市、商场、地铁、巴士总站、码头之间。地下人行
  • 梅斯蒂索人梅斯蒂索人(西班牙语:mestizo;葡萄牙语:mestiço),又译作麦士蒂索人或马斯提佐人,是西班牙语与葡萄牙语中的专有名词,曾于西班牙帝国与葡萄牙帝国使用,指的是欧洲人与美洲原住民祖先
  • 第十一航空队第十一航空队(英语:Eleventh Air Force)是美国太平洋空军下属的一个编号航空队,指挥部位于阿拉斯加州的埃尔门多夫空军基地(英语:Joint Base Elmendorf–Richardson)。
  • 柘林水库柘林水库位于中国江西省九江市永修县、武宁县之间,是在永修柘林镇筑坝拦截修水而形成的以防洪、发电、灌溉、养殖为主要功能的大(一)型水库。以柘林湖之名和云居山联合列为中国
  • 中性演化理论中性演化理论全称为分子演化的中性理论(英语:Neutral theory of molecular evolution),简称为中性理论。是日本遗传学家木村资生在1968年早期所提出的一种演化理论。这个理论认
  • Here (公司)Here(风格化'HERE',1986 - 2008年名为Navteq(被诺基亚收购),2007-2011年更名为Ovi地图,2011-2012年名为诺基亚地图)是一个曾由诺基亚提供的地图服务,现为德国汽车厂商奥迪,BMW,戴姆勒合
  • 德勒区德勒区(法语:Arrondissement de Dreux)是法国厄尔-卢瓦省所辖的一个区。总面积1501平方公里,总人口120298,人口密度80人/平方公里(1999年)。主要城镇为德勒。德勒区辖有9个县,共有1
  • .dd.dd(源自德意志民主共和国一词的德语:Deutsche Demokratische Republik中“Deutsche Demokratische”的缩写“DD”)是互联网号码分配局(IANA)计划分配给原德意志民主共和国(即东德
  • 大口伞管螺大口伞管螺(学名:),是柄眼目烟管蜗牛科伞管螺属的一种。本物种见于中国大陆的广西。常栖息在阴暗潮湿,多腐殖质环境的灌木丛、草丛中、石块、落叶下、树洞、土石缝隙中、多潮湿的
  • 竹柏属长叶竹柏 Nageia fleuryi 窄叶竹柏 Nageia formosensis Nageia maxima Nageia motleyi 竹柏 Nageia nagi 肉托竹柏 Nageia wallichiana竹柏属(学名:Nageia)是罗汉松科的一个属,