首页 >
基因拼接
✍ dations ◷ 2025-04-04 06:18:24 #基因拼接
剪接(英语:splicing,又称拼接),是一种基因重组现象,在分子生物学中,主要是指细胞核内基因信息在转录过程中或是在转录过后的一种修饰,即将内含子移除及合并外显子——内含子与外显子的名称是通用于编码基因的DNA及其转录后的RNA——是真核生物的前mRNA变成mRNA的过程之一。剪接过程是剪接体内核糖核酸(RNA)核苷酸之间的一连串生化反应,并由剪接体内小核核糖蛋白(snRNP)中的snRNA负责催化并作用。此外,也有一些类型不需外在催化物质,而是在特定二价金属离子存在的情况下,以RNA自我催化的方式进行剪接,如第一型或第二型内含子 (group-I or group-II intron)或核酸酶(ribozyme)。这也是真核生物与原核生物的区别之一(请参看顺反子)。成熟的mRNA会接着进行蛋白质生物合成中的翻译,以产生蛋白质,称翻译作用。RNA剪接可以有多种的方式。剪接的型式以内含子的结构及剪接所需的剪接因子而定。此外,RNA剪接还分为分子内 (intramolecular) 剪接 (cis splicing) 以及分子间 (intermolecular) 剪接 (trans splicing)。内含子经常存在于真核生物的蛋白质编码基因(coding gene)中,也存在于rRNA、tRNA以及许多病毒的基因组内。在内含子里,需要有 5' 剪接位点(5' splice site)、3' 剪接位点(3' splice site)及剪接分枝位点(branch point)来进行剪接。剪接是由剪接体(Spliceosome)来催化,它是以五个不同的小核核糖核酸 (snRNAs) 以及不下于一百个蛋白质所组成的大型核糖核酸蛋白质复合物,称为小核核糖蛋白(snRNP)所组成。小核核糖蛋白的 RNA 会与内含子行杂交作用(hybridization),并且参与剪接的催化反应。自剪接(英语:self-splicing)出现在稀少的内含子组成核酸酶,核酸酶在只有RNA的情况下代替了剪接体的功能。自剪接的内含子有三种,称为第一型、第二型及第三型。自剪接型内含子以与剪接体类似的方式进行剪接,但不需要任何蛋白质。这种相似性使人相信这些内含子与剪接体在演化过程上有着关连。自剪接亦可能是非常古老,且可能出现在一个还未有蛋白质的核糖核酸世界。虽然以下两种剪接可以在没有蛋白质的情况下进行,但依然会额外的使用5个RNA分子(snoRNAs)及超过50多个蛋白质,并水解多个三磷酸腺苷(ATP)分子。使用 ATP 是要提高剪接mRNA的准确性,避免出现错误。以下两次转酯化是第一型内含子(英语:group I intron)自剪接的特征:以下是第二型内含子(英语:group II intron)自剪接的特征(与第I型相同是两次交酯化):第三型内含子(英语:group III intron)的自剪接过程则类似第二型内含子。以下为其他特征:转运RNA(tRNA)剪接是另一种较罕见的剪接方法,但是却经常在 tRNA 出现。它的剪接反应涉及与剪接体或自剪接不同的生物化学过程。核糖核酸酶切开RNA,而核酸连接酶 (RNA ligase) 则将外显子接合。这种剪接方式同样不需要任何RNA分子来催化,而是一种全由蛋白质催化和作用的反应。整个过程中并未有交酯化/转酯化作用。在所有生物界或生物域中都有出现剪接,剪接的幅度及类型在主要的生物门中都可以非常不同。真核生物中RNA剪接好发于mRNA及一些非编码RNA。原核生物则很少剪接,但多是非编码RNA。两种生物最大的差异是原核生物没有剪接体剪接途径。由于剪接体内含子并非在所有 生物种中得到保存,有人便因此质疑剪接体演化的起始点。现时有两种建议的模式:内含子先天存在理论及内含子后天衍生理论。剪接体剪接及自剪接涉及两个步骤的生物化学过程。两个步骤均需要在RNA间进行转酯化反应。但是tRNA剪接则没有交醋化/转酯化过程。剪接体及自剪接交酯化反应的发生有特定的次序。首先,一个在内含子的特定“剪接分枝位点”核苷酸会与这个内含子的第一个核苷酸产生转酯化反应,形成两个RNA分子,一个是“内含子套索”另一个则是内含子前的外显子。第二,第一个外显子最后的核苷酸会与第二个外显子的首个核苷酸产生转酯化反应,连接外显子并释放内含子套索。
而在真核生物中,需要多种的snRNP合作,其中包括U1.U2.U4.U5.U6snRNA的辅助.其中详细的机制为:在很多时候,剪接过程可以透过对同一个基因转录的相同pre-mRNA使用不同的剪接选择,产生不同的mRNA异构物(isoform),最后产生多种相似却又独特的蛋白质,或是产生出稳定性低的mRNA产物以达到调节基因表达的目的。而由于选择性剪接的存在而使基因组可以产生比基因数量还多许多倍的基因产物。例如抗体的制造。Pre-mRNA的剪接也并不是完美的。据估计,人体细胞中有约70%的基因会进行选择性剪接。而其中又有三分之二以上的剪接产物 (spliced transcripts) 因为剪接过程的不够精确、或是形成未成熟的终止密码子 (premature termination codon, PTC) 而造成该 RNA 的降解 (RNA degradation)。另有研究显示,剪接过程中的交酯化/转酯化反应在特定条件下是可逆的。这对于剪接反应如何维持或调结其精确性提供了新的思路,并对如何治疗因剪接错误而起的人类疾病提供了新方向。干扰 mRNA 剪接的实验可以透过将以吗啉基或肽核酸修饰之反义寡核苷酸结合在 snRNP 于 mRNA 上的结合位点、型成套索结的核苷酸分支点或剪接调控因子的结合位点上来作出修改。另外,籍由影响剪接调控因子在细胞的正常表现,或是在试管反应中控制调控因子的相对浓度,甚至是剪接体的相对浓度都能达成对 mRNA 剪接干扰的目的。内含子或外显子的突变可以阻碍剪接及从而影响蛋白质合成。一般的误差包括:PAB2、CFI及CFII)RNA剪接:
内含子 / 外显子 · snRNA · snRNP · 剪接体(次要剪切体(英语:Minor spliceosome)、U1(英语:U1 spliceosomal RNA)) · 选择性剪接 · 前体mRNA加工因子 (PLRG1、PRPF3、PRPF4、PRPF4B、PRPF6、PRPF8、PRPF18、PRPF19、PRPF31、PRPF38A、PRPF38B、PRPF39、PRPF40A及PRPF40B)
相关
- 茶碱茶碱(英语:Theophylline)是一种化学物质,广泛存在于自然界中的红茶和绿茶中,是一种磷酸二酯酶 (PDE) 抑制剂,可广泛用于治疗呼吸系统疾病。它具有与咖啡因类似的结构和药理学特性
- 分子系统发生学分子系统发生学(Molecular phylogenetics)是分析遗传分子差异(主要是DNA序列)的系统发生学的一个分支,以获得有机体进化关系的信息。分子系统发生学分析的结果在系统发生树(phylo
- 性冷淡性功能障碍(英语:Sexual dysfunction、sexual malfunction或sexual disorder,或称性功能紊乱、性障碍),是指任何在人类性反应周期中,导致人们产生心理痛苦的问题:538。该些性反应
- 韦尼克区韦尼克区(英文:Wernicke's area)包括颞上回、颞中回后部、缘上回及角回。在这个区域内有听觉性语言中枢和视觉性语言中枢,主要的功能是用来理解单词的意义。韦尼克区的损伤,将产
- 黑体辐射黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。黑体辐射的电磁波谱只取决于黑体的温度。另一方面,所谓黑体辐射其实就是光和物质达到平衡所表现出的现象。物质达到平衡,所
- CAD4C6CCAD 是单鞭毛生物的一段融合基因,由能编码产生和嘧啶生物合成有关的三种酵素:氨甲酰合成酶Ⅱ(Carbamoyl-phosphate synthetase 2)、天冬氨酸转氨甲酰酶(Aspartate transcarba
- 四川盆地四川盆地(也被称为川渝盆地),位于亚洲大陆中南部,中国西南部四川省和重庆市境内,西邻青藏高原,是中国四大盆地之一;面积约16万平方公里,农业发达,有“天府之国”之称。四川盆地由连结
- 交响乐队管弦乐团(英语:Orchestra)是当今世上编制最庞大、最复杂的乐团型态,拥有极强大而广泛之音乐表现力。管弦乐团一般演奏古典音乐或为歌剧伴奏,有时也会替流行音乐伴奏;现代不少管弦
- 猪科猪科(学名:Suidae)属于哺乳纲偶蹄目,共有约20种现生物种与许多化石物种,包括家猪以及疣猪和鹿豚等多种野猪。所有物种均原产于亚洲、欧洲、非洲等旧大陆地区。已知最早的猪科化石
- 唐纳德·布朗唐纳德·大卫·布朗(英语:Donald David Brown,1931年12月30日-),美国胚胎学家、进化生物学家,约翰斯·霍普金斯大学华盛顿卡内基研究所研究员。布朗生于俄亥俄州辛辛那提,于1956年获