欧几里得

✍ dations ◷ 2025-06-27 12:04:40 #欧几里得
欧几里得(希腊语:Ευκλειδης,前325年-前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被称为“几何学之父”。他活跃于托勒密一世时期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公设,成为欧洲数学的基础。欧几里得也写过一些关于透视、圆锥曲线、球面几何学及数论的作品。欧几里得几何被广泛的认为是数学领域的经典之作。欧几里得(Euclid)是希腊文.mw-parser-output .Polytonic{font-family:"SBL BibLit","SBL Greek","EB Garamond","EB Garamond 12","Foulis Greek",Cardo,"Gentium Plus",Gentium,"Theano Didot","GFS Porson","New Athena Unicode",Garamond,"Palatino Linotype","Arial Unicode MS",Arial,"Lucida Grande",Tahoma,"Times New Roman","DejaVu Sans",FreeSerif,sans-serif,serif} Εὐκλείδης 的英化名字,意思是“好的名誉”。欧几里得生前活跃于亚历山大图书馆,而且很有可能曾在柏拉图学院学习。直到现在都无法得知欧几里得的生卒日期、地点和细节。直到现在,还没有找到任何欧几里得在世时期所画的画像,所以现存的欧几里得画像都是出于画家的想象。此外,一些中世纪时期的作家经常把欧几里得与墨伽拉的欧几里得(一位受苏格拉底影响的哲学家)弄混。欧几里得的生平资料流传到现在的很少,而大部分关于欧几里得的资料都是来自公元450年时普罗克洛的评论,及公元320年帕普斯的评论,距欧几里得有几个世纪之久。普罗克洛在他的《对几何原本的评论》(Commentary on the Elements)中简单的介绍了欧几里得。根据普罗克洛的说法,欧几里得属于柏拉图那一派,将《几何原本》集合在一起,这些著作原来是由柏拉图的学生(特别是欧多克索斯、泰阿泰德及欧普斯的腓力(英语:Philip of Opus)等)所写的,普罗克洛认为欧几里得没有比他们年轻多少,不过因为阿基米德(公元前287-212年)有提到欧几里得,他应该有活到托勒密一世的年代。阿基米德文章中有一些明显引用欧几里得著作的段落,虽然后来发现是后人加入的,一般仍认为欧几里得写作的年代比阿基米德要早。普罗克洛也提到一个和欧几里得有关的故事:托勒密一世问是否有比看《几何原本》更简单可以学习几何的方法。欧几里得说:“几何学无坦途。”。不过有个有关亚历山大大帝和数学家曼纳克姆斯(英语:Menaechmus)的故事,和这个有点像,因此欧几里得和托勒密一世的故事有些可疑。帕普斯在约公元前247–222年,有简单的提到欧几里得:“阿波罗尼奥斯花了许多时间和欧几里得的学生在一起,也在那个时候养成思考的习惯。”。因为在这个时期重要的数学家却没有生平资料,是很不寻常的事(欧几里得前后几个世纪的重要希腊数学家,都可以找到很多的生平资料),有些研究者认为其实没有欧几里得这个人,一般认定是他所写的作品其实是一群数学家以欧几里得为名所写,取名欧几里得的原因是为了纪念历史人物墨伽拉的欧几里得(类似一群法国数学家组成的尼古拉·布尔巴基),不过此论点尚未广为学者接受,可作为支持的证据也相当的少。《几何原本》(Elements)共有13卷,虽然其中的许多内容是来自早期的数学家,但欧几里得的贡献是将这些资料整理成单一的,有逻辑架构的作品,容易使用也容易参考,其中有严谨的数学证明系统,是后来2300年数学的基础。《几何原本》原存最早的一些版本中没有提到欧几里得,大部分版本有提到“这些是来自忒翁(英语:Theon of Alexandria)的教材”。梵蒂冈所有的版本中没有提到作者。唯一说明欧几里得写了《几何原本》的历史记录只有普罗克洛在《对几何原本的评论》中提到欧几里得写了《几何原本》。几何原本对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题,例如著名的欧几里得引理和求最大公因数的欧几里得算法。几何原本也说明完全数和梅森质数的关系(欧几里得-欧拉定理)、质数有无限多个(欧几里得定理)、有关因式分解的欧几里得引理(导出了算术基本定理及整数分解的唯一性)等。欧几里得使用了公理化的方法。公理(Axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多二千年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果,整理在严密的逻辑系统运算之中,使几何学成为一门独立的、演绎的科学。欧几里得在《几何原本》中提到的几何系统后来简称为几何,长久以来视为唯一一种可能的几何方式,不过当数学家在19世纪发现非欧几里得几何后,上述的几何就称为欧几里得几何。除了《几何原本》之外,欧几里得至少另外五本著作流传至今。它们与《几何原本》一样,内容都包含定义及证明。

相关

  • 义膜性喉炎哮吼(Croup),又称咽喉气管支气管炎(laryngotracheobronchitis)为一种呼吸道感染症,通常是由病毒感染所诱发。感染会引致气管内肿胀,并影响正常呼吸,而导致咳嗽会类似狗吠声,其他症状
  • 哈拉尔德·楚尔·豪森哈拉尔德·楚尔·豪森(德语:Harald zur Hausen,1936年3月11日-),德国医学科学家与荣誉退休教授,主要研究领域为病毒学,2008年诺贝尔生理学或医学奖得主之一,其于1970年代研判人类乳突
  • 慢性疼痛慢性疼痛(英语:Chronic Pain)指的是持续时间较长的疼痛症状。在医学领域,急性疼痛和慢性疼痛一般是由持续时间划分,最常见的是用“持续3个月”或者“持续6个月”作为两种疼痛的分
  • 生殖腺生殖腺是人和动物产生生殖细胞和分泌性激素的器官。低等动物又称“生殖巢”,即精巢和卵巢的总称;高等动物雄性的生殖腺是睾丸,雌性的生殖腺是卵巢。人类在青春期后睾丸产生精子
  • 运动神经元疾病肌萎缩性脊髓侧索硬化症(英语:Amyotrophic lateral sclerosis,缩写为 ALS),也称为肌萎缩侧索硬化症,有时也称为卢·贾里格症(英语:Lou Gehrig's disease)、渐冻人症、运动神经元病,是
  • 日本酒日本酒(日语:日本酒/にほんしゅ Nihon syu),指日本传统的酒精饮料,一般用来特指日本最具代表性的酒类,清酒。主要以米为原料,以日本传统制法制成,属于酿造酒。以日本特有制法制成的
  • 西爪哇省西爪哇(印尼语:Jawa Barat)是印度尼西亚爪哇岛上的一个省,首府为万隆。西爪哇是印尼最老的一个省,1950年它正式成为印尼的省,2000年10月17日万丹被从西爪哇分离出去形成了一个新的
  • 亲子鉴定亲子鉴定又称亲缘鉴定,是利用医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系。亲子鉴定在
  • 救济人道援助(英语:Humanitarian aid)又称人道救援,是基于人道主义(例如出现人道危机时)而对受助者作出物资上或物流上的支援,主要目的是拯救生命,舒缓不幸状况,以及维护人类尊严。 “人
  • 誓言誓言或誓词是汉语单词,意思是表达决心、信念的言辞,一般会仪式性地在正式场合宣读(宣誓)。它可以指以下内容:名称中包含誓言的条目,较出名者如: