可罗萨里过剩数

✍ dations ◷ 2025-11-23 03:21:59 #除数函数,整数数列

可罗萨里过剩数(Colossally superabundant number,有时会简称CA)是指一正整数,存在一正数ε,使得对于所有正整数m,下式恒成立:

其中σ为除数函数,是所有正约数(包括本身)的和。

头几个超过剩数为:2, 6, 12, 60, 120, 360, 2520, 5040... (OEIS中的数列A004490)

所有的可罗萨里过剩数都是超过剩数,但有些整数是超过剩数,而不是可罗萨里过剩数。

可罗萨里过剩数最早是由斯里尼瓦瑟·拉马努金所发现,他在1915年提出的相关高合成数的论文中原来有包括有可罗萨里过剩数的相关研究。不过因为期刊发行单位伦敦数学学会的财务问题,拉马努金为了减少论文的篇幅,愿意删除论文中有关可罗萨里过剩数的内容。拉马努金的研究和黎曼猜想有关.配合他提出的有关可罗萨里过剩数上下限的假设,可以证明一个称为罗宾不等式的不等式在所有足够大(英语:sufficiently large)的正整数时都成立。

拉马努金发现的可罗萨里过剩数比莱昂尼达斯·阿劳哥鲁(英语:Alaoglu)及保罗·埃尔德什所发现的类似整数要严格一些些。

可罗萨里过剩数是由有许多约数的整数组成的数列,以除数函数和本身之间的闗系来判断是否有很多约数。一正整数的除数函数是所有的正约数的和(包括1和)。保罗·巴赫曼(英语:Paul Gustav Heinrich Bachmann)证明σ()的平均值大致接近π² / 6。多玛·哈肯·格朗沃尔(英语:Thomas Hakon Grönwall)提出的格朗沃尔定理证明σ()最大值的数量值略大于上述的公式,而且存在一个递增数列使得整数σ() 大致和γlog(log())大小相当,其中γ为欧拉-马歇罗尼常数。可罗萨里过剩数需要在针对某一特定ε > 0的条件下,下列函数在为可罗萨里过剩数时有最大值:

保罗·巴赫曼及古伦沃尔证明了针对每个小于0的ε > 0,此函数会有一最大值,而且当ε越接近0,最大值的数值会越大。因此有无穷多个Colossally过剩数,不过分布的非常稀疏,在小于1018的范围内只有22个。

针对每一个ε值,上述的函数均存在一个全域极大值。但各ε值下函数的全域极大值可能有多个点,不一定只有一个点。阿劳哥鲁及保罗·埃尔德什研究在一定特定值的ε值下,会有几个不同的使上述函数均为全域最大值,针对大多数的ε值,只有一个使函数有全域最大值。不过埃尔德什和让-路易·尼古拉(Jean-Louis Nicolas)证明有一些离散的ε值形成的集合,在该ε值下函数会有2或4个不同的值,都会使函数有相同的全域最大值。

Alaoglu及保罗·埃尔德什合作在1944年发表的论文中试图证明二个连续可罗萨里过剩数之间的比值恒为素数,但没有成功。后来将上述的叙述变成一个猜想,而且证明此猜想会依循超越数论(英语:transcendental number theory)中四个指数猜想(英语:Four exponentials conjecture)中的一个特例,也就是对于二相异的素数,及一实数,只有在为正整数时才能同时使及均为有理数。

根据六个指数定理(英语:six exponentials theorem)中有关三个素数的类似结果(也就是卡尔·西格尔声称由他本人证明的定理),阿劳哥鲁及保罗·埃尔德什已证明二个连续可罗萨里过剩数之间的比值恒为素数或是半素数(二个相异素数乘积)。

阿劳哥鲁及保罗·埃尔德什的猜想尚未被证实或推翻。若其猜想成立,表示存在一个由非相异素数组成的数列1, 2, 3,…,使得第个可罗萨里过剩数可以用下式表示:

假设上述猜想成立,此素数数列的前几项为2, 3, 2, 5, 2, 3, 7, 2 (OEIS中的数列A073751),而且所有的ε值下,函数只会有1或2的值使函数有相同的全域最大值,没有任何一个ε值会对应4个使函数有相同全域最大值的值。

1980年代盖.罗宾证明黎曼猜想等于以下的不等式对于所有大于5040的正整数都成立:

当 = 5040时上述等式不成立,但罗宾证明若黎曼猜想成立时,上述不等式只有在=5040时会不成立,其余条件都会成立,上述不等式称为罗宾不等式。若除了5040外,仍有其他正整数使罗宾不等式不成立,该正整数一定是可罗萨里过剩数,因此黎曼猜想也等于上述不等式对于所有大于5040的可罗萨里过剩数都成立。

相关

  • 拟杆菌门拟杆菌门(Bacteroidetes)包括三大类细菌,即拟杆菌纲、黄杆菌纲、鞘脂杆菌纲。它们的相似性体现在核糖体16S RNA。很多拟杆菌纲的细菌种类生活在人或者动物的肠道中,有些时候成
  • 蛋白聚糖蛋白聚糖(英语:proteoglycan)是被大量糖基化了的糖蛋白。基本的蛋白聚糖单位由一个“核心蛋白质”与一个或多个共价结合着的糖胺聚糖链所组成。附着点是一个丝氨酸残基,糖胺聚糖
  • 成员书院br /small又译“学院”/small剑桥大学学院列表列举了剑桥大学目前所有的成员学院(Colleges,又译“书院”)。这些成员学院是剑桥大学本科生和研究生住宿的地方,他们同时也负责安排自己的本科生录取,亦会为大学
  • 市值市值指一间(或一组)上市公司在证券市场上的“市场价格总值”的简称。一般会以有关上市公司在相关证券市场上的收市价格作为计算基准,乘以其已发行的股份总数,而得出的市场价格总
  • 中美洲及加勒比海运动会中美洲及加勒比海运动会(英语:Central American and Caribbean Games)是一个中美洲及加勒比海地区综合性运动会,每四年举行一次。首届中美洲及加勒比海运动会于1926年于墨西哥的
  • 米尼奥米尼奥省 (Minho;宽式IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Genti
  • 澳门施政报告施政报告(葡萄牙语:Relatório das Linhas de Acção Governativa),全称澳门特别行政区政府财政年度施政报告,是由澳门特别行政区行政长官每年11月发表的报告。在澳葡政府时,澳门
  • 大房子 (圣彼得堡)大房子 (俄语:Большой дом,) 是俄罗斯圣彼得堡的一座办公楼,位于中区的铸造厂大街(Liteyny Avenue)4号(北端),靠近涅瓦河。这里是联邦安全局的圣彼得堡市和列宁格勒州分
  • 托尔巴特海达里耶托尔巴特海达里耶是伊朗的城市,位于该国东北部,由礼萨呼罗珊省负责管辖,距离首府马什哈德140公里,面积53平方公里,海拔高度1,450米,2006年人口119,390。
  • 林则徐 (电影)《林则徐》(英语:The Opium Wars,也被称为英语:Lin zexu)是1959年海燕电影制片厂所摄的彩色电影。以第一次鸦片战争为大时代背景,以1839年虎门销烟的领军人物林则徐为中心描绘的历