可罗萨里过剩数

✍ dations ◷ 2025-08-16 18:49:01 #除数函数,整数数列

可罗萨里过剩数(Colossally superabundant number,有时会简称CA)是指一正整数,存在一正数ε,使得对于所有正整数m,下式恒成立:

其中σ为除数函数,是所有正约数(包括本身)的和。

头几个超过剩数为:2, 6, 12, 60, 120, 360, 2520, 5040... (OEIS中的数列A004490)

所有的可罗萨里过剩数都是超过剩数,但有些整数是超过剩数,而不是可罗萨里过剩数。

可罗萨里过剩数最早是由斯里尼瓦瑟·拉马努金所发现,他在1915年提出的相关高合成数的论文中原来有包括有可罗萨里过剩数的相关研究。不过因为期刊发行单位伦敦数学学会的财务问题,拉马努金为了减少论文的篇幅,愿意删除论文中有关可罗萨里过剩数的内容。拉马努金的研究和黎曼猜想有关.配合他提出的有关可罗萨里过剩数上下限的假设,可以证明一个称为罗宾不等式的不等式在所有足够大(英语:sufficiently large)的正整数时都成立。

拉马努金发现的可罗萨里过剩数比莱昂尼达斯·阿劳哥鲁(英语:Alaoglu)及保罗·埃尔德什所发现的类似整数要严格一些些。

可罗萨里过剩数是由有许多约数的整数组成的数列,以除数函数和本身之间的闗系来判断是否有很多约数。一正整数的除数函数是所有的正约数的和(包括1和)。保罗·巴赫曼(英语:Paul Gustav Heinrich Bachmann)证明σ()的平均值大致接近π² / 6。多玛·哈肯·格朗沃尔(英语:Thomas Hakon Grönwall)提出的格朗沃尔定理证明σ()最大值的数量值略大于上述的公式,而且存在一个递增数列使得整数σ() 大致和γlog(log())大小相当,其中γ为欧拉-马歇罗尼常数。可罗萨里过剩数需要在针对某一特定ε > 0的条件下,下列函数在为可罗萨里过剩数时有最大值:

保罗·巴赫曼及古伦沃尔证明了针对每个小于0的ε > 0,此函数会有一最大值,而且当ε越接近0,最大值的数值会越大。因此有无穷多个Colossally过剩数,不过分布的非常稀疏,在小于1018的范围内只有22个。

针对每一个ε值,上述的函数均存在一个全域极大值。但各ε值下函数的全域极大值可能有多个点,不一定只有一个点。阿劳哥鲁及保罗·埃尔德什研究在一定特定值的ε值下,会有几个不同的使上述函数均为全域最大值,针对大多数的ε值,只有一个使函数有全域最大值。不过埃尔德什和让-路易·尼古拉(Jean-Louis Nicolas)证明有一些离散的ε值形成的集合,在该ε值下函数会有2或4个不同的值,都会使函数有相同的全域最大值。

Alaoglu及保罗·埃尔德什合作在1944年发表的论文中试图证明二个连续可罗萨里过剩数之间的比值恒为素数,但没有成功。后来将上述的叙述变成一个猜想,而且证明此猜想会依循超越数论(英语:transcendental number theory)中四个指数猜想(英语:Four exponentials conjecture)中的一个特例,也就是对于二相异的素数,及一实数,只有在为正整数时才能同时使及均为有理数。

根据六个指数定理(英语:six exponentials theorem)中有关三个素数的类似结果(也就是卡尔·西格尔声称由他本人证明的定理),阿劳哥鲁及保罗·埃尔德什已证明二个连续可罗萨里过剩数之间的比值恒为素数或是半素数(二个相异素数乘积)。

阿劳哥鲁及保罗·埃尔德什的猜想尚未被证实或推翻。若其猜想成立,表示存在一个由非相异素数组成的数列1, 2, 3,…,使得第个可罗萨里过剩数可以用下式表示:

假设上述猜想成立,此素数数列的前几项为2, 3, 2, 5, 2, 3, 7, 2 (OEIS中的数列A073751),而且所有的ε值下,函数只会有1或2的值使函数有相同的全域最大值,没有任何一个ε值会对应4个使函数有相同全域最大值的值。

1980年代盖.罗宾证明黎曼猜想等于以下的不等式对于所有大于5040的正整数都成立:

当 = 5040时上述等式不成立,但罗宾证明若黎曼猜想成立时,上述不等式只有在=5040时会不成立,其余条件都会成立,上述不等式称为罗宾不等式。若除了5040外,仍有其他正整数使罗宾不等式不成立,该正整数一定是可罗萨里过剩数,因此黎曼猜想也等于上述不等式对于所有大于5040的可罗萨里过剩数都成立。

相关

  • Atkins减肥法阿特金斯饮食法(英语:Atkins diet)是美国医生罗伯特·阿特金斯(Robert Atkins)创造的一种颇具争议的减肥饮食方法,其要求完全不吃碳水化合物,而可以吃高蛋白的食品,即不吃任何淀粉类
  • 酒石酸氢钾酒石酸氢钾(化学式:KC4H5O6)是酒石酸钾的酸式盐。通常为无色至白色斜方晶系结晶性粉末,在水中的溶解度随温度而变化,不溶于乙醇、乙酸,易溶于无机酸;是酿葡萄酒时的副产品,食品工业
  • 红辣椒《盗梦侦探》(日语:パプリカ)是日本作家筒井康隆撰写的科幻小说。原作第一部于《Marie Claire》1991年1月号至1992年3月号、第二部于《Marie Claire》1992年8月号至1993年6月号
  • 正电子发射断层扫描正电子发射计算机断层扫描(英语:Positron emission tomography,简称PET)是一种核医学临床检查的成像技术。PET技术是当前唯一的用解剖形态方式进行功能、代谢和受体显像的技术,具
  • 张劲松张劲松(1973年9月2日-),山西原平人,中国男子篮球运动员,CBA历史上的传奇人物,九十年代中国男篮黄金一代的成员。身高1.98m,体重95kg,司职后卫,以准确的中远距离投篮出名。张劲松长年效
  • 埃里克森社会心理发展阶段埃里克森社会心理发展阶段是根据爱利克·埃里克森描述,将正常人的一生,从婴儿期到成人晚期,分为8个发展阶段 。在每个阶段,个人都面临、并克服新的挑战。每个阶段都建筑在成功完
  • 2007年世界杯多项体育运动在2007年举办世界杯:
  • 耶鲁大学名人录耶鲁人(Yalies)指与耶鲁大学具有某种关系的个人,其中包括校友、教职员工和其他人员。以下是著名的耶鲁人的名单。从耶鲁大学毕业的教授用.
  • 福冈德洲会医院福冈德洲会医院是位于日本福冈县春日市的医疗设施。由医疗法人德洲会经营。全年无休24小时开放(包含急诊)。1979年10月1日、全国第6家开设的德洲会医院(当时床位数为150)。德洲
  • 鄚子泩鄚子泩(越南语:Mạc Tử Sanh/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","Min