在统计学中,点估计(英语:point estimation)是指以样本数据来估计总体参数, 估计结果使用一个点的数值表示“最佳估计值”,因此称为点估计。由样本数据估计总体分布所含未知参数的真实值,所得到的值,称为估计值。
点估计可以与区间估计形成对比:这种区间估计通常是在频率论推断的情况下的置信区间 ,或在贝叶斯推断的情况下的可信区间 。
目前有多种估计法可供选择,每种估计法都有不同属性。
贝叶斯推断通常基于后验分布 。 许多贝叶斯估计量是后验分布的集中趋势统计量,例如,它的均值,中位数或模式:
MAP估计具有良好的渐近性质,对于许多复杂问题,最大似然估计也存在局限性。 对于最大似然估计符合一致性的常规问题,最大似然估计的最终结果与MAP估计一致。 根据瓦尔德定理,贝叶斯估计是可以接受的。
最小消息长度 ( MML )点估计基于贝叶斯信息理论 ,并不与后验分布直接相关。
贝叶斯滤波器存在以下特殊情况:
以下几种计算统计迭代法与贝叶斯分析有密切联系: