保守力

✍ dations ◷ 2025-11-28 23:41:58 #经典力学,力,势

假设一个受到某作用力的粒子,从初始位置移动到终结位置,而此作用力所做的功跟移动路径无关,则称此力为保守力(conservative force),又称为守恒力。等价地说,假设一个粒子从某位置,移动经过一条闭合路径后,又回到原本位置,则作用于这粒子的保守力所做的机械功(保守力对于整个闭合路径的积分)等于零。假设在一个物理系统里,所有的作用力都是保守力,则称此物理系统为“保守系统”,又称为“守恒系统”。对于这种系统,在空间里每一个位置,都可以给定位势一个唯一数值。假设粒子从某位置移动至另一位置,则由于保守力的作用,粒子的势能可能会有所改变,但前后差值与移动经过的路径无关。例如,重力是一种保守力,而摩擦力是一种非保守力。

保守力可以视为一种使机械能守恒的作用力。在一个孤立系统里,假若所有的作用力都是保守力,则此系统的机械能守恒。在这里,机械能指的是动能与势能的总合。

思考一个闭合路径,假设,感受着某作用力,一个粒子从初始位置A移动经过任意闭合路径后,又回到位置 A ,而此作用力所做于粒子的机械功都等于零,则此作用力满足保守力的条件,可以被分类为保守力。请注意,对于这物理系统,很可能有其他的作用力施加于粒子,但是,这分类只专注于指定的作用力,忽略其他的作用力。当然,根据叠加原理,这分类也可以专注于几个作用力的合力。例如重力、弹簧力、磁场力(依照某些定义而定,稍后会加以详细说明)、电场力(伴随的磁场与时间无关,请参阅法拉第电磁感应定律)等等,都是保守力;而摩擦力和空气阻力是典型的非保守力。

对于非保守力,由于能量守恒,损耗的能量必需被传输到其他地方。通常,能量会转换为热能,例如,摩擦力会产生热能,有时候,还会产生声能。对于移动中的船只,水的阻力会将船只的机械能转换为热能、声能、以及在尾流边缘的波能。由于热力学第二定律,这些能量损耗是不可逆的。

闭合路径思想实验得到的直接结果是,保守力对于一个粒子所做的机械功,跟移动路径无关;还有,这机械功等于,终结势能减去初始势能。试着证明这句话的正确性。设想从点 A 到点 B 有两条不同的路径。选择路径 1 从点 A 移动到点 B ,然后选择路径 2 反方向从点 B 移动到点 A ,粒子能量的改变是零 。因此,不管是选择路径 1 或路径 2 ,从点 A 移动到点 B ,所做的机械功相等。保守力所做的机械功与经过哪一条路径无关,只要两条路径的初始点与终结点相同 。

举例而言,假设一个小孩从一个滑梯上滑下来,从滑梯的顶端到底端,不论滑梯的形状,直线型或螺旋型,重力对于这小孩所做的机械功都一样的。重力所做的机械功,只跟这小孩的落差有关。

设定 F {\displaystyle \mathbf {F} } 为在空间任意位置良好定义(或空间内单连通的区域)的矢量场,假若它满足以下三个等价的条件中任意一个条件,则可称此矢量场为保守矢量场:

保守力因为可以保守机械能而得名。最常见的保守力为重力、电场力(伴随的磁场与时间无关,请参阅法拉第电磁感应定律)、弹簧力。

1⇒2:

2⇒3:

3⇒1:

总结,这三个条件彼此等价。由于符合第二个条件就等于通过保守力的闭合路径考试。所以,只要满足上述三个条件的任何一条件,施加于粒子的作用力就是保守力。

很多种作用力不是力矢量场,特别是跟速度有关的作用力。对于这些案例,上述三个条件并不数学等价。例如,磁场力满足第二个条件(由于作用于带电粒子的磁场力所做的机械功永远为零),但是不满足第三个条件,而第一个条件更是不存在定义──磁场力不是矢量场,磁场力与速度有关,必需先给定速度函数的形式,才能计算磁场力的旋度。

所以,有一些物理学者将磁场力分类为保守力,而又有一些物理学者反对这样分类。磁场力是一个特别案例;大多数跟速度有关的作用力,像摩擦力,不能满足上述三个条件中的任意一个条件,因此,可以明确地分类为非保守力。

在经典力学里,当计算一个物理系统的运动时,为了简易分析与计算,自由度被忽略,因此会出现非保守力。举例而言,摩擦力能不被视为一种非保守力,而是每一个分子在运动时互相作用的力。可是,这样做,就不能应用统计力学,而必须特别计算每一个分子的运动。对于宏观系统,非保守力的概算,比起额外几百万自由度的计算,会简单很多。非保守力的案例有摩擦力、非弹性物质的应力。

在广义相对论里,重力是非保守力,这可以从水星近日点的反常进动观察得着。但是,应力-能量张量是守恒的。

相关

  • 电子作战电子作战(以下简称电战)泛指利用各种装备与手段来控制与使用电磁波段(包含无线电、可见光、红外线与紫外线波段)而进行的军事行动,这些行动包含维持我方使用与控制的能力,与抵挡敌
  • 仙兽属玲珑仙兽 X. linglong Wang et al. 2014 宋氏仙兽 X. songae Meng, et al. 2014仙兽是侏罗纪时期异兽亚纲哺乳动物的一属。该属下目前发现了两个物种:玲珑仙兽和宋氏仙兽,均发
  • 戴维·芒福德戴维·布赖恩特·芒福德(David Bryant Mumford,1937年6月11日-),又译大卫·曼福德,美国数学家。在哈佛大学,他上奥斯卡·扎里斯基的课时,引起了对代数几何学的兴趣。芒福德曾研究模
  • 钴化合物钴化合物是钴和其它元素形成的化合物。钴在化合物中,最稳定的价态是+2价,在特定配体的存在下,也有+3价的稳定化合物。此外,还存在着高氧化态+4、+5和低氧化态-1、0、+1的钴化合
  • span class=nowrapCusub2/subSOsub4/sub/span&g硫酸亚铜化学式为Cu2SO4,是铜(I)的硫酸盐(在Cu(I)氧化态中,3d电子层已全充满),是离子化合物,常温下为灰色固体,属斜方晶系。硫酸亚铜有反磁性。由于Cu+不稳定,Cu2SO4溶于水或加热
  • 文旅部中华人民共和国文化和旅游部,是中华人民共和国国务院主管文化和旅游业工作的组成部门。文化和旅游部主要负责贯彻落实中国共产党的宣传文化工作方针政策,研究拟订文化和旅游工
  • 杏林子刘侠(1942年4月12日-2003年2月8日),已故中华民国作家,北投国小毕业。据其自述,因家乡在陕西省扶风县杏林镇(今属陕西省宝鸡市),也为了纪念自己一辈子与医院结下的“不解之缘”(因为杏
  • 层孔虫纲层孔虫(Stromatoporoids)是一类古老的海生无脊椎动物,生存于寒武纪至白垩纪,在志留纪及泥盆纪最为繁盛,常形成礁体,石炭纪至三叠纪无化石记录,中生代仅有少数代表,现已完全灭绝。于1
  • 新泽西州立大学罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey /ˈrʌtɡərz/)是美国新泽西州的最大高等学府,是一所公立研究型大学,名列公立常春
  • 事件 (概率论)在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多