配方法

✍ dations ◷ 2025-06-28 15:05:29 #初等代数

配方法,是初等代数中一种简化计算的技巧,可以用来解二次方程、判别解析几何中某些多项式的图形,或者用来计算微积分学中的某些积分型式等。

将下方左边的多项式化成右边的形式,就是配方法的目标:

在基本代数中,配方法是一种用来把二次函数化为一个多项式的平方与一个常数的和的方法。这种方法是把以下的多项式

配方法通常用来推导出二次方程的求根公式:

我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有 ( x + y ) 2 = x 2 + 2 x y + y 2 {\displaystyle (x+y)^{2}=x^{2}+2xy+y^{2}} 的形式,可导出 2 x y = b a x {\displaystyle 2xy={\frac {b}{a}}x} ,因此 y = b 2 a {\displaystyle y={\frac {b}{2a}}} 。等式两边加上 y 2 = ( b 2 a ) 2 {\displaystyle y^{2}=({\frac {b}{2a}})^{2}} ,可得:

这个表达式称为二次方程的求根公式。

考虑把以下的方程配方:

如果尝试把矩形 x 2 {\displaystyle x^{2}} 和两个 b 2 x {\displaystyle {\frac {b}{2}}\,x} 合并成一个更大的正方形,这个正方形还会缺一个角。把以上方程的两端加上 ( b 2 ) 2 {\displaystyle \left({\frac {b}{2}}\right)^{2}} ,正好是欠缺的角的面积,这就是“配方法”的名称的由来。

为了得到 a x 2 + b x = ( c x + d ) 2 + e , {\displaystyle ax^{2}+bx=(cx+d)^{2}+e,\,} 我们设

得出 a x 2 + b x = ( a x + b 2 a ) 2 b 2 4 a . {\displaystyle ax^{2}+bx=\left({\sqrt {a}}\,x+{\frac {b}{2{\sqrt {a}}}}\right)^{2}-{\frac {b^{2}}{4a}}.\,}

注意 ( c x + d ) 2 + e = c 2 x 2 + 2 c d x + d 2 + e {\displaystyle \left(cx+d\right)^{2}+e=c^{2}x^{2}+2cdx+d^{2}+e} 。为了把 c 2 x 2 + 2 c d x + d 2 + e {\displaystyle c^{2}x^{2}+2cdx+d^{2}+e\!} 化为 a x 2 + b x + f {\displaystyle ax^{2}+bx+f\!} 的形式,我们必须进行以下的代换:

现在, a {\displaystyle a} b {\displaystyle b} f {\displaystyle f} 依赖于 c {\displaystyle c} d {\displaystyle d} e {\displaystyle e} ,因此我们可以把 c {\displaystyle c} d {\displaystyle d} e {\displaystyle e} a {\displaystyle a} b {\displaystyle b} f {\displaystyle f} 来表示:

当且仅当 f {\displaystyle f} 等于零且 a {\displaystyle a} 是正数时,这些方程与以上是等价的。如果 a {\displaystyle a} 是负数,那么 c {\displaystyle c} d {\displaystyle d} 的表达式中的±号都表示负号──然而,如果 c {\displaystyle c} d {\displaystyle d} 都是负数的话,那么 ( c x + d ) 2 {\displaystyle (cx+d)^{2}} 的值将不受影响,因此 ± {\displaystyle \pm } 号是不需要的。

从中我们可以求出多项式为零时 x {\displaystyle x} 的值,也就是多项式的根。

我们也可以求出 x {\displaystyle x} 取得什么值时,以下的多项式为最大值或最小值:

假设我们要求出以下函数的原函数:

因此积分为:

考虑以下的表达式:

作为另外一个例子,以下的表达式

因此

通常配方法是把第三项 v 2 {\displaystyle v^{2}} 加在 u 2 + 2 u v {\displaystyle u^{2}+2uv\,} ,得出一个平方。我们也可以把中间的项( 2 u v {\displaystyle 2uv} 2 u v {\displaystyle -2uv} )加在多项式 u 2 + v 2 {\displaystyle u^{2}+v^{2}\,} 就得出一个平方。

从以下的恒等式中,

我们可以看出,正数 x {\displaystyle x} 与它的倒数的和总是大于或等于 2。

假设我们要把以下的四次多项式分解:

最后一个步骤是把所有的项按降幂方式排列。

相关

  • 贝克每松贝克每松(Beclometasone dipropionate),是一种类固醇类药物,为一种糖皮质素,常见商品名为Qvar。 此药物作为吸入器的药粉、乳霜、药片以及鼻喷剂。 吸入器药粉常用于治疗长期的气
  • 凝溶胶蛋白结构 / ECOD1C0F, 1C0G, 1D4X, 1DEJ, 1EQY, 1ESV, 1H1V, 1KCQ, 1MDU, 1NLV, 1NM1, 1NMD, 1P8X, 1P8Z, 1SOL, 1T44, 1YAG, 1YVN, 2FF3, 2FF6, 2FH1, 2FH2, 2FH3, 2FH4, 3A5L,
  • 费慰梅威尔玛·坎农·费尔班克(英语:Wilma Cannon Fairbank,婚前本姓 Cannon,1909年4月23日-2002年4月4日),汉名费慰梅,是一位研究中国艺术和建筑的美国学者。其夫费正清。费慰梅生于美国
  • 冠状冠状沟,阴茎颈的俗称,是男性阴茎龟头下缘的一圈沟状构造。尿道海绵体前端膨大成龟头时,于龟头基部形成。为阴茎十分敏感的部位,此处性刺激可达性高潮并发生射精。冠状沟平时为阴
  • pico-皮,或译皮可(英语:Pico-),是一个国际单位制词头,符号p,表示10-12,或0.000 000 000 001。它源自于西班牙语pico;一说来源于意大利语词汇piccolo。使用举例:
  • 维生素B9叶酸(Folate、folic acid)也称为维生素B9、维生素M、维生素Bc,属于维生素B。叶酸可用于治疗由叶酸缺乏症引起的贫血。叶酸也是孕妇的营养补充品。在新生儿的神经管缺损(英语:Neur
  • 硅酸盐矿物硅酸盐矿物是指含硅的矿物,是造岩矿物中最重要的一种,地壳中主要是由硅酸盐矿物组成,硅酸盐矿物会依其分子结构再进行分类,不同的类别中,其含硅和氧的比例也有不同。岛硅酸盐的英
  • 中华人民共和国人口普查中国最早的一次人口普查在西汉汉平帝元始二年(公元2年)进行,数据为12,366,470户,57,671,401人。但由于历史文献资料离现在很远,不很完善。中华人民共和国建国以来一共进行过六次
  • 国家科学委员会科技部是中华民国有关科学技术发展的最高主管机关。负责推动国家科技发展、支援学术研究、发展科学工业园区、管理行政院国家科学技术发展基金,以及技术审查各部会科技计划可
  • 澳大利亚洲坐标:26°S 141°E / 26°S 141°E / -26; 141澳大利亚城市人口列表 巴布亚新几内亚城镇列表(英语:List of cities and towns in Papua New Guinea by population)澳大利亚洲又