最速降线问题

✍ dations ◷ 2025-04-04 11:15:59 #曲线,数学问题

最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。

1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。

费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。

运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足

式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。
通过假设光在光速v在满足: v = 2 g y {\displaystyle v={\sqrt {2gy}}} 后达到了最大速度,则

整理折射定律式中的各项并平方得到

可以解得对有

代入v和vm的表达式得到

这是一个由直径为的圆所形成的倒过来的摆线的微分方程。

约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。
如果我们从最短时间路径发生微小移动,那么形成三角形满足

不变求微分,得到

最后整理得到

最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为。对新旧两条路径,改变量为

对于最短时间的路径,两个时间相等,故得到

因此最短时间的情况为

在垂直平面上,自原点 ( 0 , 0 ) {\displaystyle \left(\,0,\,0\right)} 至目的地 ( x 1 , y 1 ) {\displaystyle \left(\,x_{1},\,y_{1}\right)} 的最速降线具有以下数学形式:

这里的 y {\displaystyle y} 座标轴方向向下,且 y 1 0 {\displaystyle y_{1}\geq 0} θ {\displaystyle \theta } 为此摆线参数表达式的参数,原点处 θ = 0 {\displaystyle \theta =0}

物体自原点沿最速降线滑至 θ = θ 1 {\displaystyle \theta =\theta _{1}} 处所需的时间可由以下积分式给出:

利用 d s = d x 2 + d y 2 {\displaystyle ds={\sqrt {\mathrm {d} x^{2}+\mathrm {d} y^{2}}}} 以及 v = 2 g y {\displaystyle v={\sqrt {2gy}}} ,并以 θ {\displaystyle \theta } 作为参数,整理后得

自此摆线的参数式中易知 y {\displaystyle y} 的最大值为 k 2 {\displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {\displaystyle 2r} ,因此

现假设终点与原点直线距离   l   {\displaystyle \ l\ } ,且终点对原点的俯角为 ϕ {\displaystyle \phi } 。利用此摆线的参数式,可知

利用 l {\displaystyle l} 的关系式求出 r {\displaystyle r} ,并代回下滑时间中,得

综合上述,讨论在   l   {\displaystyle \ l\ } 已知的情况下,下滑时间 t {\displaystyle t} 与俯角 ϕ {\displaystyle \phi } 的关系为

相关

  • 革兰氏阴性革兰氏阴性菌(英语:Gram-negative bacteria)泛指革兰氏染色反应呈红色的细菌。在革兰氏染色实验中,首先添加了结晶紫,再添入另一种复染染料(通常使用番红),从而将所有的革兰氏阴性菌
  • 营养器官营养器官通常指植物的根、茎、叶等器官。 营养器官的基本功能是维持植物生命,这些功用抱括了如:光合作用等。但在某些状况之下,可能有 无性生殖/营养生殖,意指,这些营养器官可能
  • 杜立德医生杜立德医生(英语:Doctor Dolittle)或译为“赖医生”,是一个出生自英国而后来在美国工作的小说家休·洛夫廷(或译休·洛夫汀)(Hugh Lofting, 1886年 - 1947年)所著的儿童文学作品系
  • 土库曼共产党土库曼共产党是苏联共产党在土库曼苏维埃社会主义共和国的分支,从1924年统治土库曼直到土库曼斯坦独立。在1985年成为第一书记的萨帕尔穆拉特·尼亚佐夫在1991年把原土库曼共
  • 普利昂朊毒体(英语:prion,发音为/ˈpriː.ɒn/;又译为普利昂、蛋白质侵染因子、毒朊、感染性蛋白质、普恩蛋白等)是一种具感染性的致病因子,能引发人类及哺乳动物的传染性海绵状脑病。朊
  • HN2氮芥类物质(英语:Nitrogen mustards)是一类结构与芥子气相似的细胞毒化疗药物,属于非选择性烷化剂的一种。虽然主要应用于临床,早期的氮芥类物质也能像芥子气一样用作化学武器。
  • 棕鬣狗棕鬣狗(学名:Parahyaena brunnea)又称 褐鬣狗、滩狼,是一种生活在南部非洲荒漠地带的鬣狗,也见于草原和海滩,系 棕鬣狗属(Parahyaena)的唯一物种,也有学者将其归入鬣狗属(Hyaena)。外形
  • 摩利支天摩利支天(梵语:Marīci,意译为阳炎、威光、阳光,也作摩利支菩萨、摩里支菩萨、摩利支天菩萨、日前菩萨、阳焰天菩萨、积光天菩萨、威光天菩萨、摩利支佛母、具光佛母、积光佛母
  • 2019冠状病毒病奥地利疫情2019冠状病毒病奥地利疫情介绍2019冠状病毒病疫情于奥地利发生之情况,于2020年2月25日在因斯布鲁克出现首宗确诊病例。2月2月3月3月4月4月过去15日过去15日经实验室报导的COV
  • 咨商心理学咨商心理学(英语:Counseling Psychology),是以咨商为主题的心理学。当一个人有需要时,透过与咨商者的互动,来协助其觉察和了解自身,探究满足需要或解决问题之方法,这种语言互动就是