最速降线问题

✍ dations ◷ 2025-06-29 01:29:42 #曲线,数学问题

最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。

1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。

费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。

运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足

式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。
通过假设光在光速v在满足: v = 2 g y {\displaystyle v={\sqrt {2gy}}} 后达到了最大速度,则

整理折射定律式中的各项并平方得到

可以解得对有

代入v和vm的表达式得到

这是一个由直径为的圆所形成的倒过来的摆线的微分方程。

约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。
如果我们从最短时间路径发生微小移动,那么形成三角形满足

不变求微分,得到

最后整理得到

最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为。对新旧两条路径,改变量为

对于最短时间的路径,两个时间相等,故得到

因此最短时间的情况为

在垂直平面上,自原点 ( 0 , 0 ) {\displaystyle \left(\,0,\,0\right)} 至目的地 ( x 1 , y 1 ) {\displaystyle \left(\,x_{1},\,y_{1}\right)} 的最速降线具有以下数学形式:

这里的 y {\displaystyle y} 座标轴方向向下,且 y 1 0 {\displaystyle y_{1}\geq 0} θ {\displaystyle \theta } 为此摆线参数表达式的参数,原点处 θ = 0 {\displaystyle \theta =0}

物体自原点沿最速降线滑至 θ = θ 1 {\displaystyle \theta =\theta _{1}} 处所需的时间可由以下积分式给出:

利用 d s = d x 2 + d y 2 {\displaystyle ds={\sqrt {\mathrm {d} x^{2}+\mathrm {d} y^{2}}}} 以及 v = 2 g y {\displaystyle v={\sqrt {2gy}}} ,并以 θ {\displaystyle \theta } 作为参数,整理后得

自此摆线的参数式中易知 y {\displaystyle y} 的最大值为 k 2 {\displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {\displaystyle 2r} ,因此

现假设终点与原点直线距离   l   {\displaystyle \ l\ } ,且终点对原点的俯角为 ϕ {\displaystyle \phi } 。利用此摆线的参数式,可知

利用 l {\displaystyle l} 的关系式求出 r {\displaystyle r} ,并代回下滑时间中,得

综合上述,讨论在   l   {\displaystyle \ l\ } 已知的情况下,下滑时间 t {\displaystyle t} 与俯角 ϕ {\displaystyle \phi } 的关系为

相关

  • 伪阳性第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误为统计学中推论统计学的名词。在假设检验中,有一种假设称为“零假设(虚无假设)”;假设检验的目的是利
  • 古北界古北界是八个动物分区中最大的一个,分布在旧大陆北方,因此称为古北界。它包括欧洲大陆,喜马拉雅山脉以北的区域,非洲北部以及阿拉伯半岛的中北部。古北界(Palearctic realm)分成
  • 声带突声带突(vocal process)位于杓状软骨基部的前角处,因为它是前水平的向前倾,并附着在声带上。杓状软骨为具有内侧突及侧向突的成对软骨。内侧突称为声带突,因为它是声带的附着物。
  • 不当劳动行为不当劳动行为(Unfair labor practice)又称“不公平劳动行为”、“不公正劳工措施”,是指雇主意图破坏或弱化工会活动所采取的不公平行为。目前,国际劳动法学界公认的“不当行为
  • 海马结构海马的组成(hippocampal formation)为大脑内侧颞叶的构造。有关该构造所包含的范围,学界并没有共识。有些学者认为海马结构包含齿状回(英语:dentate gyrus)、海马回本体,和岬下脚(英
  • P53 p63 p73家族p53 p63 p73 家族 是一个抑癌基因家族包括:有时候也简称为“p53家族”。p53、p63与p73不但在结构与功能上相似,在进化上也有相关性。整个p53家族都是从无脊椎动物的p63/p73祖
  • 高压氧疗高压氧治疗,或简称高压氧,英文:Hyperbaric oxygen therapy (HBOT) ,乃医学上利用高压的氧气来提供治疗的方式。高压氧治疗利用了几个原理:高压氧最主要的治疗适应症包括:以上除一
  • 水韭水韭属(学名:Isoëtes),多年生挺水植物或沉水植物,高从5公分到15公分都有。叶子通常呈现丛生状,暗色且繁衍用的孢子密生于叶基内侧。一般来说,该种植物都生长在湖沼湿地。据记录,全
  • 时间长度比较本页按时间长短从小到大列出一些例子,以帮助理解不同时间长度的概念,比较时间单位的数量级。1幺秒(yoctosecond)约是1.86×1019普朗克时间。1仄秒(zeptosecond)即1000幺秒。阿
  • 章宗祥章宗祥(1879年-1962年10月1日),字仲和,浙江吴兴荻港(今湖州南浔区和孚镇) 人。中华民国政治人物。章宗祥本为清朝秀才,清光绪二十五年(1899年)留学日本,先入第一高等学校,后入东京帝国大