最速降线问题

✍ dations ◷ 2025-04-26 12:22:30 #曲线,数学问题

最速降线问题,又称最短时间问题、最速落径问题,是探讨在重力作用而忽略摩擦力的情况下,一个质点在一点A以速率为零开始,沿某条曲线,去到一点不高于A的B,该以何种曲线行进才能令所需的时间最短。在部分欧洲语言中,这个问题称为Brachistochrone,即希腊语中的“最短”(brochistos)和“时间”(chronos)。这条线段就是摆线,可以用变分学证明。

1638年,伽利略在《论两种新科学》中以为此线是圆弧。约翰·伯努利参考之前分析过的等时降落轨迹,证明了此线是摆线,并在1696年6月的《博学通报》发表。艾萨克·牛顿、雅各布·伯努利、莱布尼兹和洛必达都得出同一结论,即正确的答案应该是摆线的一段。除了洛必达的解外,其他人的解都在1697年5月的《博学通报》出现。

费马原理说明,两点间光线传播的路径是所需时间最少的路径。约翰·伯努利利用该原理,对此问题进行解决。

运用机械能守恒定律,可以导出在恒定重力场中运动的物体的速度满足

式中y表示物体在竖直方向上下落的距离,g为重力加速度。通过机械能守恒可知,经不同的曲线下落,物体的速度与水平方向的位移无关。
通过假设光在光速v在满足: v = 2 g y {\displaystyle v={\sqrt {2gy}}} 后达到了最大速度,则

整理折射定律式中的各项并平方得到

可以解得对有

代入v和vm的表达式得到

这是一个由直径为的圆所形成的倒过来的摆线的微分方程。

约翰的哥哥雅各布·伯努利说明了如何从二阶微分得到最短时间的情况。一种现代版本的证明如下。
如果我们从最短时间路径发生微小移动,那么形成三角形满足

不变求微分,得到

最后整理得到

最后的部分即二阶微分下距离的改变量与给定的时间的关系。现在考虑下图中的两条相邻路径,中间的水平间隔为。对新旧两条路径,改变量为

对于最短时间的路径,两个时间相等,故得到

因此最短时间的情况为

在垂直平面上,自原点 ( 0 , 0 ) {\displaystyle \left(\,0,\,0\right)} 至目的地 ( x 1 , y 1 ) {\displaystyle \left(\,x_{1},\,y_{1}\right)} 的最速降线具有以下数学形式:

这里的 y {\displaystyle y} 座标轴方向向下,且 y 1 0 {\displaystyle y_{1}\geq 0} θ {\displaystyle \theta } 为此摆线参数表达式的参数,原点处 θ = 0 {\displaystyle \theta =0}

物体自原点沿最速降线滑至 θ = θ 1 {\displaystyle \theta =\theta _{1}} 处所需的时间可由以下积分式给出:

利用 d s = d x 2 + d y 2 {\displaystyle ds={\sqrt {\mathrm {d} x^{2}+\mathrm {d} y^{2}}}} 以及 v = 2 g y {\displaystyle v={\sqrt {2gy}}} ,并以 θ {\displaystyle \theta } 作为参数,整理后得

自此摆线的参数式中易知 y {\displaystyle y} 的最大值为 k 2 {\displaystyle k^{2}} ,此值必须等于摆线的绕转圆直径 2 r {\displaystyle 2r} ,因此

现假设终点与原点直线距离   l   {\displaystyle \ l\ } ,且终点对原点的俯角为 ϕ {\displaystyle \phi } 。利用此摆线的参数式,可知

利用 l {\displaystyle l} 的关系式求出 r {\displaystyle r} ,并代回下滑时间中,得

综合上述,讨论在   l   {\displaystyle \ l\ } 已知的情况下,下滑时间 t {\displaystyle t} 与俯角 ϕ {\displaystyle \phi } 的关系为

相关

  • 镀锌镀锌,是指在铁或钢表面上铺上金属锌的防锈(英语:Rustproofing)方法。锌是一种抗腐蚀性颇高的金属,能够把铁隔绝于氧气和水,令铁不能发生生锈所需的的化学反应;由于锌的金属活动性比
  • 退役退伍军人(英语:Veteran),指服完常备役或预备役之后,退伍离开军队,恢复一般公民身份,至社会工作的人。在台湾又称为荣民。在韩语中,参加过特定战事的退伍军人(如各国的韩战、越战老兵)
  • 性器官人类的性是指性的质量,或指人类怎样对性予以体验或表达。性可能经历和表达的方式多种多样,包括思想、幻想、欲望、信仰、态度、价值观、行为、实践、角色和关系。这些可能表现
  • 牵引力在机械工程中,牵引力是指包括汽车、铁路机车、自行车等轮式车辆载具的传动系统对车轮产生以旋转力矩,通过动轮与地面或钢轨之间的相互作用而产生。力的作用方向与车辆运动方向
  • 撒丁语撒丁语(撒丁语:sardu或limba sarda或lingua sarda)分布于意大利的撒丁岛上,属于印欧语系罗曼语族。撒丁语之下的诸“方言”差异程度颇大,因此“撒丁语”一词指的是一种语言还是几
  • 会子会子是中国南宋时的纸币,绍兴三十年(1160年)于临安首度发行。绍兴末年,南宋政府铜钱紧缺,开始以票据“会子”应付开支,先在临安地区使用,叫“东南会子”。绍兴三十年(1160年)二月,钱端
  • 应用层应用层(英语:Application layer)位于OSI模型的第七层。应用层直接和应用程序接口结合,并提供常见的网络应用服务。应用层也向第六层表示层发出请求。
  • 奇幻小说奇幻文学是指文学类型的奇幻作品创作,主要的形式为奇幻小说。广义上含有奇幻要素的文学作品也包括在内,像是玄幻小说、武侠小说,以及古代所流传的童话、神话、民间传奇故事。古
  • 查尔斯·金斯莱查尔斯·金斯莱(英语:Charles Kingsley,1819年-1875年)。英国文学家、学者与神学家。早年曾先后就学于皇家学院、伦敦大学以及剑桥大学,后常年担任牧师、教授并开始发表作品。他擅
  • 急性肾炎综合征肾炎综合征(英语:Nephritic syndrome),又称肾炎症候群,以血尿、蛋白尿为特征的综合征,常伴随水肿和高血压。可进一步细分为:医学导航:泌尿系统解剖/生理/发育/细胞病理/酸碱/先天/肿瘤、症