文件分配表(英语:File Allocation Table,首字母缩略字:FAT),是一种由微软发明并拥有部分专利 的文件系统,供MS-DOS使用,也是所有非NT核心的Windows系统使用的文件系统。
FAT文件系统考虑当时电脑性能有限,所以未被复杂化,因此几乎所有个人电脑的操作系统都支持。这特性使它成为理想的软盘和存储卡文件系统,也适合用作不同操作系统中的数据交流。现在,一般所讲的FAT专指FAT32。
但FAT有一个严重的缺点:当文件删除后写入新数据,FAT不会将文件整理成完整片段再写入,长期使用后会使文件数据变得逐渐分散,而减慢了读写速度。碎片整理是一种解决方法,但必须经常重组来保持FAT文件系统的效率。
FAT文件系统遵行已用了多年的软件方法来进行规范。它在1977年由比尔·盖茨和马斯·麦当劳为了管理磁盘而发明,并在1980年被添·彼得逊的86-DOS操作系统采用。这也是86-DOS操作系统与CP/M操作系统最大的不同点,若非此项差异,86-DOS操作系统与CP/M操作系统几乎可说完全相同。
初期的FAT就是现在俗称的FAT12。作为软盘的文件系统,它有几项限制:不支持分层性结构,簇定址只有12位(这使得控制FAT有些棘手)而且只支持最多32M(216)的分区。
当时入门级的磁盘是5.25"、单面、40磁道、每个磁道8个扇区、容量略少于160KB。上面的限制超过了这个容量一个或几个数量级,同时允许将所有的控制结构放在第一个磁道,这样在读写操作时移动磁头。这些限制在随后的几年时间里被逐步增大。
由于唯一的根目录也必须放在第一个磁道,能够存放的文件个数就限制在几十个。
MS-DOS 2.0为了支持以内置10MB硬盘为特色的IBM PC XT,因此几乎与该计算机同时在1983年初发布。它引进了层次目录结构,除了允许更有效率地组织文件外,目录允许在硬盘上存储更多的文件,这是因为最大文件个数不再受制于(仍然是固定且有限的)根目录大小。这个数目现在能够等同于簇的数目(甚至更大,这是考虑到长度为0的文件并不占据任何FAT簇)。
FAT本身的格式并没有改变。PC XT的10MB的硬盘有4KB大小的簇。如果后来安装了一个20MB的硬盘,并且使用MS-DOS 2.0格式化,最后的簇大小将变为8KB,硬盘容量将变为15.9MB。
在1984年,IBM发布PC AT,内含一个20MB的硬盘。微软公司也同步发布了MS-DOS 3.0。簇集地址增加至16位,允许更大数量的簇(最大65,517),所以有更大的文件系统大小。但是,最大数量扇区及最大分区(相当于磁盘)的大小仍是32MB。所以,尽管技术上已经是“FAT16”,这种格式并不是我们今天常见到的这个名字所代表的格式。在MS-DOS 3.0格式化一个20 MB的硬盘,这硬盘将不能被MS-DOS 2.0或之前的版本所访问。当然,MS-DOS 3.0仍然可访问MS-DOS 2.0的格式(8KB簇的分区)。
MS-DOS 3.0也开始支持高密度1.2MB 5.25"磁盘,最著名的是每个磁道有15个扇区,这样就允许FAT有更大的空间。这或许促进了一个对于簇大小的不确定的优化,簇大小从2个扇区减到1个。这样做的最后结果是高密度磁盘比旧的磁盘的速度大幅度降低。
除了改进FAT文件系统本身的结构之外,另一个提高FAT存储空间的方式是支持多个磁盘分区。最初,受限于主引导记录中文件分配表的固定结构一个硬盘最多只能切出多达4个分区。然而,由于DOS设计要求只能有一个分区标识为“活动的(Active)”,它也是主引导代码启动所用的分区。使用DOS工具不可能创建几个“主”DOS分区,并且第三方的工具也至少会警告这样一个机制将与DOS不兼容。
为了用一种兼容的方式使用更多的分区,一种新的分区类型被开发出来(1986年1月的MS-DOS 3.2),它实际上是另外称为的一个容器。最初它里面只允许有一个逻辑分区、支持最大64MB的硬盘。在MS-DOS 3.3(1987年8月)这个限制更改到24个分区;它可能来自于强制性的C:-Z:的磁盘命名规则。逻辑分区表使用盘上的数据结构来描述,可能是为了简化编码它与主引导记录非常相似,并且它们组织成类似于俄罗斯套娃那样的结构。一颗硬盘中只能有一个扩展分区。
在扩展分区观念导入之前,一些硬盘控制器(当时采用独立的硬盘控制卡,IDE标准尚未出现)能够将大硬盘显示为两个独立的硬盘。
1987年11月,我们今天称之为的格式最终到来,它在康柏DOS 3.31中去掉了磁盘扇区的16位计数器。这个结果曾经一度被称为。尽管看起来磁盘上的变动很小,这个DOS的磁盘代码都必须检查并转换到32位的扇区数,由于它完全是16位的汇编语言这样一个现实,这项工作就变得非常复杂。
1988年,这项改进通过MS-DOS 4.0得到广泛应用。现在分区大小受限于每个簇的8位有符号扇区计数,它最大能达到2的64次方,对于一个常用的有32KB个簇每扇区512字节的硬盘来说,将FAT16分区大小的“明显”限制扩充到2GB。在磁光盘媒体上,它能使用1或者2KB的扇区,这样大小限制也就成比例地增大。
后来,Windows NT通过将每个簇的扇区数当作无符号数将最大的簇大小增加到64KB。然而这个格式与当时其它任何格式的FAT都不兼容,并且这样的操作会产生大量的内部碎片。Windows 98也支持这种格式的读写操作,但是它的磁盘管理工具不支持这种格式。
Windows 95设计人员的一个用户体验目标就是:除了传统的8.3文件名以外,在新操作系统中使用长文件名(LFN)。长文件名通过在目录条目排列时,使用一个工作区来实现(参见下面)。按照Windows 95VxD设备驱动程序的命名规则,这个新扩充的文件系统通常称为VFAT。
有意思的是,VFAT驱动在早于Windows 95的Windows for Groups 3.11中就已经出现,但它仅仅用于实现32位文件访问,一个绕过DOS的视窗自带高性能保护模式文件管理系统,它能够直接使用BIOS或者更好的32位磁盘访问,如Windows自带的保护模式磁盘驱动程序。它是一个后门;微软为Windows for Groups 3.11所作的广告说32位文件访问基于“芝加哥项目的32位文件系统”。
在Windows NT中,FAT文件系统对于长文件名的支持从3.5版就已经开始了。在MS-DOS 7.0以后的版本中,则可使用类似DOSLFN这样的软件使得DIR等命令显示出长文件名。
为了解决FAT16对于卷大小的限制同时让DOS的实模式在非必要情况下不减少可用常规内存状况下处理这种格式,微软公司决定实施新一代的FAT,它被称为FAT32,带有32位的簇数,目前用了其中的28位。
理论上,这将支持总数达268,435,438(<228)的簇,允许磁盘容量达到8TB。然而,由于微软公司scandisk工具的限制,FAT32不能大于4,177,920(<222)个簇,这将卷的容量限制在了124.55GB,除非不再使用“scandisk”。
FAT32随着Windows 95 OSR2发布,尽管需要重新格式化才能使用这种格式并且DriveSpace 3(Windows 95 OSR2和Windows 98所带版本)从来都不支持这种格式。Windows 98提供了一个工具用来在不丢失数据的情况下将现有的硬盘从FAT16转到FAT32格式。在NT产品线上对于它的支持从Windows 2000开始。
Windows 2000和Windows XP能够读写任何大小的FAT32文件系统,但是这些平台上的格式化程序只能创建最大32GB的FAT32文件系统。Thompson and Thompson(2003)写道“奇怪的是微软公司说这种现象是故意设计的” 微软公司知识库文章184006的确是这么说的,但是没有提出任何关于这个限制的合理解释。Peter Norton的观点是“微软公司在有意地削弱FAT32文件系统”。
在Windows Embedded CE 6.0中引入,Windows XP SP3 以及 Windows Vista SP1也引入了exFAT的支持。在很多方面exFAT有了相当大的改进,特别适合用于闪存。
其它IBM PC的可选操作系统,如Linux、FreeBSD和BeOS都支持FAT格式,并且大部分都在相应的Windows版本发布以后很快就支持VFAT和FAT32格式。早期的Linux发布版本还包括称为UMSDOS的格式,它是保存在一个独立的称为--linux-.——的带有Unix文件属性(如长文件名和访问许可)的FAT。UMSDOS在VFAT发布以后就不再使用。Linux内核从2.5.7开始就禁止了这项功能。Mac OS X操作系统在除启动盘之外的其它卷上也支持FAT文件系统。
FAT文件系统本身不是为支持ADS而设计的,但是一些高度依赖它们的操作系统创造出了不同的方法以在FAT驱动器上处理它们。这些方法或者在额外的文件或路径中存储附加的信息(Mac OS),或者给那些磁盘数据结构中以前没有使用的变量赋予新的含义(OS/2和Windows NT)。第二种设计,尽管想像起来会更有效率,但是它们不能被不认识这种格式的工具复制或者备份;使用不能识别这种格式的磁盘工具(如碎片整理或CHKDSK)操控这些磁盘时可能会破坏这些信息。
Mac OS使用PC Exchange存储不同的数据,文件属性和文件名存在一个名为FINDER.DAT的隐藏文件中,资源分支(ADS)存在名为RESSOURCE.FRK的子目录中,这些数据都存在使用它们的每个目录中。从PC Exchange 2.1开始,它们将Mac OS的长文件名保存为标准的FAT长文件名,并且将超过31个字符的FAT长文件名转换为唯一的31字符能够被Macintosh应用程序识别的文件名。
Mac OS X将元数据(资源分支、不同的ADS、文件属性)保存在与所有人相同并以“._”开始的名字的隐藏文件中,并且Finder将一些文件夹和文件元数据存在名为“.DS Store”的隐藏文件中。
OS/2高度依赖于扩展属性(EA)并且将它们存在位于FAT12或FAT16的根目录下名为“EA DATA. SF”的隐藏文件中。这个文件使用以前文件(或者目录)的目录清单中的两个保留字节索引。在FAT32格式中,这些字节中存有文件或者目录开始簇号的高16位,这样就使它难于在FAT32上保存EA。扩展属性可以通过Workplace Shell桌面、REXX脚本、许多系统图形用户接口和命令行工具(如4OS2)来访问。
Windows NT支持HPFS、NTFS和FAT中所有扩展属性的处理(所用处理机制完全类似于OS/2),但是不能处理其它一些存于NTFS驱动器的ADS数据。试图从复制带有与NTFS驱动器属性不同扩展属性的ADS到FAT驱动器将报告一个警告信息提示ADS将会丢失。
Windows 2000以后产品的处理类似于Windows NT但复制到FAT32时它们没有显示任何警告信息直接丢弃扩展属性(但报告其他像“Macintosh Finder Info”和“Macintosh Resource Fork”这些ADS引起的警告)。
微软公司最近获得了VFAT和FAT32的专利(但没有得到最初的FAT的专利),这引起了人们对于微软将会对Linux OS发布和初始化他们产品的媒体厂商收取专利费的担忧(参见下面的FAT授权协议)。尽管最初的裁定不利于微软公司,但是微软仍然获取了胜利并且得到了专利授权。
由于微软公司已经宣布不再开发基于MS-DOS作业系统Windows Me的后续版本,所以不再有可能会有新版的FAT。对于大多数用途来说,为Windows NT系列开发的NTFS文件系统从效率、性能、安全性及可靠性来说都优于FAT;它的主要缺点是小容量文件所占的额外空间以及除了基于NT的Windows操作系统之外的很少有其他操作系统支持。由于确切的规范是微软公司的商业秘密,这就使得使用一个DOS软盘用于恢复目的很困难(根据微软MCSE训练教材说明此点是刻意保密,以确保NTFS文件系统不易被盗取数据)。微软公司提供了一个恢复界面来解决这个问题,由于安全的原因它严重限制了缺省情况下它所能解决的问题。
FAT仍然是移动媒体所常用的一种文件系统(CD和DVD是例外),软碟使用的是FAT12,其他多数活动媒体用的是FAT32(如用于数位相机的快闪存储卡和USBU盘,Windows格式化的默认选项仍为FAT32),除非其容量超出FAT32的限制。出于兼容性和存储空间利用率的考虑FAT仍然用在这些驱动器上,同时也是由于这些活动媒体上的文件的许可更容易遇到麻烦而不是更重要这样一个事实。
Windows 2000和XP支持的FAT32格式化的限制是32GB,这导致使用现代硬盘的用户必须要么使用NTFS要么使用其它程序格式化驱动器。一个解决的办法是使用从Linux移植到Windows平台的一个工具mkdosfs。
一个FAT文件系统包括四个不同的部分。
格式如下
同样的介质描述必须在重复复制到每份FAT的第一个字节。有些操作系统(MSX-DOS 1.0版)全部忽略启动扇区参数,而仅仅使用FAT的第一个字节的介质描述确定文件系统参数。
这里描述的启动扇区能在如OS/2 1.3的启动盘上看到。早期的版本使用一个较短的基本输入输出系统参数块,它们的启动代码在前面开始(如OS/2 1.1中是偏移0x2b)。
Apricot PC的MS-DOS所用FAT的实现有一个不同的启动扇区组织以使用计算机与IBM不兼容的基本输入输出系统。跳转指令和OEM名被省略并且MS-DOS文件系统参数位于0x50(在标准扇区中偏移为0x0B - 0x17)。后来的Apricot MS-DOS版本除了Apricot特有的引导区之外也具有了读写标准启动分区的能力。
BBC Master 512上的DOS Plus根本就不使用传统的引导区。数据磁盘省略了引导区并且以一个单份的FAT开始(FAT的第一个字节用来确定磁盘容量),启动磁盘使用一个包含启动调用程序的小型ADFS文件系统,后面跟随一个单份的FAT。
一个分区分成同等大小的簇,也就是连续空间的小块。簇的大小随着FAT文件系统的类型以及分区大小而不同,典型的簇大小介于2KB到32KB之间。每个文件根据它的大小可能占有一个或者多个簇;这样,一个文件就由这些这些(称为单向链表)簇链所表示。然而,这些链并不一定一个接着一个在磁盘上存储,它们经常是在整个数据区域的储存。
文件分配表(FAT)是映射到分区每个簇的条目列表。每个条目记录下面五种信息中的一种。
每个版本的FAT文件系统使用不同大小的FAT条目。这个大小已经由名字表示出来,例如FAT16文件系统的每个条目使用16位表示,32位文件系统使用32位表示。这个不同意味着FAT32系统的文件分配表能比FAT16映射更多的簇,它也允许FAT32有更大的分区大小。这也使得FAT32比FAT16更能有效地利用磁盘空间,因为每个驱动器能够寻址更小的簇,这也就意味着更少的空间浪费。
FAT条目值:
注意FAT32只使用32位中的28位。高4位通常是0但它们是保留位,不要更改它们。在上面的表中它们用问号表示。
目录表是一个表示目录的特殊类型文件(现今通常称为文件夹)。它里面保存的每个文件或目录使用表中的32字节条目表示。每个条目记录名字、扩展名、属性(文件、目录、隐藏、只读、系统和卷)、创建的日期和时间、文件/目录数据第一个簇的地址,最后是文件/目录的大小。
除了FAT12和FAT16文件系统中的根目录表占据特殊的位置之外,所有其它的目录表都存在数据区域。
合法的DOS文件名包括下面一些字符:
DOS文件名位于OEM字符集。
位于根目录区域和子目录区域的目录条目都是下面的格式:
第一个字节可以是下面的特殊数值:
第一个字节可以是下面一些特殊值:
属性值0x0F用来表示长文件名条目。
注意只保存了2秒的分辨率。更细分辨率的文件创建时间在偏移0x0d处。
长文件名(LFN)使用一个技巧存储在FAT文件系统上——在目录表中添加假的条目。这些条目使用一个普通文件无法使用的卷标属性标识,普通文件无法使用是由于它们被大多数旧的MS-DOS程序忽略。很显然,一个只包含卷标的目录被当作空卷,这样就允许删除;使用长文件名创建的文件在从普通的DOS删除就会发生这样的情形。
校验和也允许检验长文件名是否与8.3文件名匹配;当一个文件删除之后使用DOS在同一个目录位置重新创建之后就会出现不匹配现象。校验和使用下面的算法计算。(注意pFcbName是指向如正常目录条目中所显示的文件名的指针,例如前八个字符是文件名,最后三个是扩展名。点是隐含的。文件名中没有使用的空间将使用空格(ASCII 0x20)补齐。例如,“Readme.txt”将记录为"README TXT"。
unsigned char lfn_checksum (const unsigned char *pFcbName){ int i; unsigned char sum=0; for (i=11; i; i--) sum = ((sum & 1) ? 0x80 : 0) + (sum >> 1) + *pFcbName++; return sum;}