群同态

✍ dations ◷ 2025-09-09 03:50:23 #群论,态射

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,给定两个群 ( G , ) {\displaystyle (G,*)} ,并且它还在 h ( u 1 ) = h ( u ) 1 {\displaystyle h(u^{-1})=h(u)^{-1}} 的意义上映射逆元到逆元。因此我们可以说 h {\displaystyle h} “兼容于群结构”。

过去同态 h ( x ) {\displaystyle h(x)} 常用 x h {\displaystyle x_{h}} x h {\displaystyle x^{h}} 来表示,它容易混淆于索引或一般下标。更新近的倾向是把群同态写在它们的自变量的右侧,省略括号,如此 h ( x ) {\displaystyle h(x)} 简化成了 x   h {\displaystyle x\ h} 。这种方法因为其更适应自动机从左至右读字的习惯从而在某些广泛应用自动机理论的群论中颇为流行。

在考虑有额外的结构的群的数学领域中,同态不仅要满足上述的群结构,还要满足额外的结构。比如拓扑群的同态经常要求是连续的。

我们定义 h {\displaystyle h} 的核被映射到 H {\displaystyle H} 中单位元 e h {\displaystyle e_{h}} 上的 G {\displaystyle G} 中元素的集合

定义 h {\displaystyle h} 的像为

核是 G {\displaystyle G} 的正规子群(事实上, h ( g 1 u g ) = h ( g ) 1 h ( u ) h ( g ) = h ( g ) 1 e H h ( g ) = e H {\displaystyle h\left(g^{-1}ug\right)=h(g)^{-1}h(u)h(g)=h(g)^{-1}e_{H}h(g)=e_{H}} ),而像则是 H {\displaystyle H} 的子群。同态 h {\displaystyle h} 是单射(并叫做单同态)当且仅当 k e r ( h ) = { e G } {\displaystyle \mathrm {ker} (h)=\{e_{G}\}}

同态的核和像可以被解释为对它接近于同构程度的程度。第一同构定理说明了群同态的像 i m ( h ) {\displaystyle \mathrm {im} (h)} 同构于商群 G / k e r ( h ) {\displaystyle G/\mathrm {ker} (h)}

如果 h : G H {\displaystyle h:G\to H} k : H K {\displaystyle k:H\to K} 是群同态,则 h k : G K {\displaystyle h\circ k:G\to K} 也是群同态。这证明所有群构成的类,和态射即群同态,一起构成一个范畴。

如果同态 h {\displaystyle h} 是双射,则你还可以证明它的逆映射仍是同态,这种 h {\displaystyle h} 叫做群同构;在这种情况下,群 G {\displaystyle G} H {\displaystyle H} 被称为是“同构的”:它们只在元素的符号上有差异而对于所有实践用途都是同一的。

如果 h : G G {\displaystyle h:G\to G} 是群同态,我们称之为 G {\displaystyle G} 的自同态。如果它进一步的是双射并且因此是同构,则称为自同构。群 G {\displaystyle G} 的所有自同构的集合,带有函数复合作为运算,自身形成一个群,叫做 G {\displaystyle G} 的自同构群,记为 A u t ( G ) {\displaystyle \mathrm {Aut} (G)} 。例如说, ( Z , + ) {\displaystyle (\mathbb {Z} ,+)} 的自同构群只有两个元素,恒等变换和乘以 1 {\displaystyle -1} ;它同构于 Z / 2 Z {\displaystyle \mathbb {Z} /2\mathbb {Z} }

满同态是满射的同态,单同态是单射的同态。

如果 G {\displaystyle G} H {\displaystyle H} 是阿贝尔群(就是交换群),则所有从 G {\displaystyle G} H {\displaystyle H} 的群同态的集合 H o m ( G , H ) {\displaystyle \mathrm {Hom} (G,H)} 自身是阿贝尔群:两个同态的和 h + k {\displaystyle h+k} 定义为

H {\displaystyle H} 的交换律对于证明 h + k {\displaystyle h+k} 也是群同态是必需的。同态的加法在如下意义上兼容于同态的复合:如果 f {\displaystyle f} H o m ( K , G ) {\displaystyle \mathrm {Hom} (K,G)} 中, h {\displaystyle h} , k {\displaystyle k} H o m ( G , H ) {\displaystyle \mathrm {Hom} (G,H)} 的元素,并且 g {\displaystyle g} H o m ( H , L ) {\displaystyle \mathrm {Hom} (H,L)} 中,则

这证明了一个阿贝尔群的所有自同态的集合 E n d ( G ) {\displaystyle \mathrm {End} (G)} 形成了一个环,即 G {\displaystyle G} 的自同态环。例如,由两个 Z / 2 Z {\displaystyle \mathbb {Z} /2\mathbb {Z} } 的直积构成的阿贝尔群(克莱因四元群)的自同态群同构于带有 Z / 2 Z {\displaystyle \mathbb {Z} /2\mathbb {Z} } 内元素的 2 × 2 {\displaystyle 2\times 2} 矩阵的环。上述兼容性还证明所有阿贝尔群带有群同态的范畴形成了预加法范畴;存在直积和良定义的核使这个范畴成为阿贝尔范畴的原型。


相关

  • 基本传染数基本传染数(Basic reproduction number)是在流行病学上,指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染到某种传染病的人,会把疾病传染给其他多少个人的平均数。基本
  • 猫熊亚科熊猫亚科(学名:Ailuropodinae)是食肉目熊科动物的一个演化支,包括了现存的大熊猫属(Ailuropoda)及史前的始熊猫属(Ailurarctos)、郊熊猫属(Agriarctos)、印度熊属(Indarctos)、克氏熊猫
  • 动物形态学动物学人类学 · 人与动物关系学 蜜蜂学 · 节肢动物学 医学节肢动物学 · 鲸类学 贝类学 · 昆虫学 动物行为学 · 蠕虫学 两栖爬行动物学 · 鱼类学 软体动物学 · 哺乳动
  • 西班牙裔西班牙裔(Hispanic)或西班牙语裔是美洲地区的一个特定语言族群,他们拥有来自于拉丁美洲或者伊比利亚半岛的血统。广义来说,西班牙裔包含所有在美洲居住并且自定义为西班牙裔或者
  • 丸藤广贵丸藤广贵 (日语:丸藤 広貴,1973年9月13日-),日本男性动画师、插画家、人物设计师。大多以“まるふじひろたか”名义参加动画制作(将汉字全部转换成片假名)。SATELIGHT所属。除了从事
  • 动量中心系在物理学中,动量中心系(Center-of-momentum frame)是人为选取的这样一个参考系,在此参考系中,系统的总动量为零。动量中心系又叫做零动量系(zero-momentum frame)。 动量中心系的特
  • 北菱电兴北菱电兴(日语:北菱電興株式会社/ほくりょうでんこう)是一家电气和电子机器设备销售公司,总部位于日本石川县金泽市。除了各种工控设备,电脑相关设备和周边设备,也从事有线电视(CATV
  • 蒙古语拉丁字母蒙古语拉丁字母可以有如下两层意思:蒙古语拉丁字母(蒙古语:Латин үсэг)指的是用来记载或转写蒙古语的拉丁字母。蒙古人民共和国于1931年曾经将蒙古语的书写系统由传统
  • 六甲断层六甲断层(英语:Liuchia Fault),位于台南市的活动断层,属于逆移断层,呈北北东转南北走向,由台南市白河区头崎内里的六重溪南岸向南延伸至台南市官田区社子村,长约21公里。六甲断层在
  • 米洛万·吉拉斯米洛万·吉拉斯(塞尔维亚语:Милован Ђилас;塞尔维亚-克罗地亚语:Milovan Đilas Đido;1911年6月4日-1995年4月20日),旧译密洛凡·德热拉斯,生于黑山(或译门的内哥罗)科拉