群同态

✍ dations ◷ 2025-04-03 17:15:21 #群论,态射

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,给定两个群 ( G , ) {\displaystyle (G,*)} ,并且它还在 h ( u 1 ) = h ( u ) 1 {\displaystyle h(u^{-1})=h(u)^{-1}} 的意义上映射逆元到逆元。因此我们可以说 h {\displaystyle h} “兼容于群结构”。

过去同态 h ( x ) {\displaystyle h(x)} 常用 x h {\displaystyle x_{h}} x h {\displaystyle x^{h}} 来表示,它容易混淆于索引或一般下标。更新近的倾向是把群同态写在它们的自变量的右侧,省略括号,如此 h ( x ) {\displaystyle h(x)} 简化成了 x   h {\displaystyle x\ h} 。这种方法因为其更适应自动机从左至右读字的习惯从而在某些广泛应用自动机理论的群论中颇为流行。

在考虑有额外的结构的群的数学领域中,同态不仅要满足上述的群结构,还要满足额外的结构。比如拓扑群的同态经常要求是连续的。

我们定义 h {\displaystyle h} 的核被映射到 H {\displaystyle H} 中单位元 e h {\displaystyle e_{h}} 上的 G {\displaystyle G} 中元素的集合

定义 h {\displaystyle h} 的像为

核是 G {\displaystyle G} 的正规子群(事实上, h ( g 1 u g ) = h ( g ) 1 h ( u ) h ( g ) = h ( g ) 1 e H h ( g ) = e H {\displaystyle h\left(g^{-1}ug\right)=h(g)^{-1}h(u)h(g)=h(g)^{-1}e_{H}h(g)=e_{H}} ),而像则是 H {\displaystyle H} 的子群。同态 h {\displaystyle h} 是单射(并叫做单同态)当且仅当 k e r ( h ) = { e G } {\displaystyle \mathrm {ker} (h)=\{e_{G}\}}

同态的核和像可以被解释为对它接近于同构程度的程度。第一同构定理说明了群同态的像 i m ( h ) {\displaystyle \mathrm {im} (h)} 同构于商群 G / k e r ( h ) {\displaystyle G/\mathrm {ker} (h)}

如果 h : G H {\displaystyle h:G\to H} k : H K {\displaystyle k:H\to K} 是群同态,则 h k : G K {\displaystyle h\circ k:G\to K} 也是群同态。这证明所有群构成的类,和态射即群同态,一起构成一个范畴。

如果同态 h {\displaystyle h} 是双射,则你还可以证明它的逆映射仍是同态,这种 h {\displaystyle h} 叫做群同构;在这种情况下,群 G {\displaystyle G} H {\displaystyle H} 被称为是“同构的”:它们只在元素的符号上有差异而对于所有实践用途都是同一的。

如果 h : G G {\displaystyle h:G\to G} 是群同态,我们称之为 G {\displaystyle G} 的自同态。如果它进一步的是双射并且因此是同构,则称为自同构。群 G {\displaystyle G} 的所有自同构的集合,带有函数复合作为运算,自身形成一个群,叫做 G {\displaystyle G} 的自同构群,记为 A u t ( G ) {\displaystyle \mathrm {Aut} (G)} 。例如说, ( Z , + ) {\displaystyle (\mathbb {Z} ,+)} 的自同构群只有两个元素,恒等变换和乘以 1 {\displaystyle -1} ;它同构于 Z / 2 Z {\displaystyle \mathbb {Z} /2\mathbb {Z} }

满同态是满射的同态,单同态是单射的同态。

如果 G {\displaystyle G} H {\displaystyle H} 是阿贝尔群(就是交换群),则所有从 G {\displaystyle G} H {\displaystyle H} 的群同态的集合 H o m ( G , H ) {\displaystyle \mathrm {Hom} (G,H)} 自身是阿贝尔群:两个同态的和 h + k {\displaystyle h+k} 定义为

H {\displaystyle H} 的交换律对于证明 h + k {\displaystyle h+k} 也是群同态是必需的。同态的加法在如下意义上兼容于同态的复合:如果 f {\displaystyle f} H o m ( K , G ) {\displaystyle \mathrm {Hom} (K,G)} 中, h {\displaystyle h} , k {\displaystyle k} H o m ( G , H ) {\displaystyle \mathrm {Hom} (G,H)} 的元素,并且 g {\displaystyle g} H o m ( H , L ) {\displaystyle \mathrm {Hom} (H,L)} 中,则

这证明了一个阿贝尔群的所有自同态的集合 E n d ( G ) {\displaystyle \mathrm {End} (G)} 形成了一个环,即 G {\displaystyle G} 的自同态环。例如,由两个 Z / 2 Z {\displaystyle \mathbb {Z} /2\mathbb {Z} } 的直积构成的阿贝尔群(克莱因四元群)的自同态群同构于带有 Z / 2 Z {\displaystyle \mathbb {Z} /2\mathbb {Z} } 内元素的 2 × 2 {\displaystyle 2\times 2} 矩阵的环。上述兼容性还证明所有阿贝尔群带有群同态的范畴形成了预加法范畴;存在直积和良定义的核使这个范畴成为阿贝尔范畴的原型。


相关

  • 雨br /海br /代在月球地质时代里,雨海代发生于38亿5千万年前至38亿年前之间,接续于酒海纪之后,内太阳系后期重轰击期的结束即在此一时期。早雨海世是形成雨海的撞击发生在此一时期刚开始的时
  • 太平洋法郎太平洋法郎 (简称为法郎)是法属波利尼西亚、新喀里多尼亚和瓦利斯和富图纳的流通货币。货币编号XPF。太平洋法郎与欧元之间采取固定汇率,1太平洋法郎=0.00838欧元。
  • 五加皮五加(学名:Eleutherococcus gracilistylus)为五加科五加属的植物。灌木;掌状复叶,在长枝上互生,短枝上簇生;小叶常为5枚;夏季开黄绿色花,伞形花序;黑色球形核果。五加主要产于中国的中
  • 博氏巨鲶博氏巨鲶(学名:Pangasius bocourti),又名巴沙鱼(Basa fish),是巨鲶属的一种,原产于越南湄公河三角洲和泰国湄南河流域。这些鱼是国际市场重要的食用鱼。博氏巨鲶在越南养殖主要集中
  • 美国科学家联合会美国科学家联盟(另译:美国科学家联合会,The Federation of American Scientists,FAS),由当年某些参加曼哈顿计划的科学家于1945年成立。在该组织的网站上宣称有七十位诺贝尔奖得主
  • 中华人民共和国岛屿列表 政治主题本文叙述中华人民共和国政府实际统治领域的岛屿。中华人民共和国共有500平方米以上的岛屿有6535个,总面积达3.7万平方千米,岛屿的海岸线总长达13217.8千米,其中有居民
  • 后三国君主 · 首都 · 文学史 · 教育史 电影史 · 韩医史 陶瓷史 · 戏剧史 韩国国宝 · 朝鲜国宝后三国(892年-936年)是朝鲜历史上的时代划分之一,《高丽史》开篇即定后三国
  • 卡特琳娜·格兰厄姆凯特琳娜·亚历山大·哈特福德·格雷厄姆(英语:Katerina Alexandre Hartford Graham,1989年9月5日-),生于瑞士日内瓦的美国演员、歌手、舞者及模特,父母亲分别为美国黑人裔和犹太裔
  • 阇耶室利摩诃菩提树阇耶室利摩诃菩提树(僧伽罗语:ජය ශ්‍රී මහා බොධිය),或称斯里兰卡圣菩提树,是位于斯里兰卡阿努拉德普勒的一株菩提树。阇耶室利摩诃菩提树为斯里兰卡的八圣地(英语:A
  • 夜香木夜香木(学名:),又称夜香树、夜来香、夜香花、夜光花、木本夜来香、夜香玉,属茄科夜香树属植物。供观赏,花可用作芳香原料。常绿性灌木,直立或近攀援状,原产地为热带美洲及西印度。植