椭球面

✍ dations ◷ 2024-12-22 20:44:03 #椭球面
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中 + θ ′ {displaystyle {color {white}+}!!!theta {color {white}'},!} 是天顶角, + φ − {displaystyle {color {white}+}!!!varphi {color {white}!!!-},!} 是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中 β {displaystyle beta ,!} 是一点的参数纬度, + λ ′ {displaystyle {color {white}+}!!!lambda {color {white}'},!} 是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中 p ≈ 1.6075 {displaystyle papprox 1.6075,} 。这样相对误差最多为 1.061 {displaystyle 1.061,} %(Knud Thomsen公式); p = 8 5 = 1.6 {displaystyle p={frac {8}{5}}=1.6,} 的值对于接近于球的椭球较为适宜,其相对误差最多为 1.178 {displaystyle 1.178,} %(David W. Cantrell公式)。对于 a = b {displaystyle a=b,} 的情况,有一个精确的公式:c {displaystyle c,} 比 a {displaystyle a,} 和 b {displaystyle b,} 都小很多时,表面积近似等于 2 π a b . {displaystyle 2pi ab.,!} 。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径 d 2 {displaystyle {d_{2}}} 与 d 1 {displaystyle {d_{1}}} 可表示为d 1 , 2 2 = 8 ( 1 − z c 2 ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) ∑ i = 1 3 cos 2 ⁡ p i r i 2 ± ( ∑ i = 1 3 cos 2 ⁡ p i r i 2 ) 2 − 4 ( ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) / r 1 2 r 2 2 r 3 2 {displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中 ρ {displaystyle rho ,!} 是密度。均匀密度的椭球的转动惯量为:其中 I x x {displaystyle I_{mathrm {xx} },!} 、 I y y {displaystyle I_{mathrm {yy} },!} 和 I z z {displaystyle I_{mathrm {zz} },!} 分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。

相关

  • 蜱传脑炎蜱传脑炎疫苗(Tick-borne encephalitis vaccine)是用于预防蜱传脑炎(英语:tick-borne encephalitis)的疫苗。蜱传脑炎在中欧、东欧与北亚最为盛行。接种过疫苗的人里面有超过87%
  • 权力屈服实验米尔格拉姆实验(英语:Milgram experiment),又称权力服从研究(Obedience to Authority Study)是一个针对社会心理学非常知名的科学实验。实验的概念最先开始于1963年由耶鲁大学心理
  • 艸部,为汉字索引中的部首之一,康熙字典214个部首中的第一百四十个(六划的则为第二十三个)。在正体中文中,艸部归于六划部首,而在简体中文中,将汉字部首规范的《汉字部首表》中,将“
  • 喀什米尔语克什米尔语( कॉशुर, 克什米尔语: کٲشُر‎)是克什米尔邦的主要语言。根据宪法它是印度其中一个法定语言。克什米尔语是属于印欧语系印度-伊朗语族的印度-雅利安语支
  • 酒驾醉酒驾驶或酒后驾驶(英语:driving under the influence (of alcohol),常简写为DUI,中文简称醉驾、酒驾)是指在酒精、酒类饮品影响下控制并驾驶机动车辆(有时包括单车、有发动机、
  • 臂神经丛臂神经丛(英文:brachial plexus)为一神经丛。起源于第五节颈椎神经(C5)到第一节胸椎神经(T1)的前支。在头、颈、上肢内连接锁骨、上臂、前臂、手的神经丛的名称。臂神经丛会由cervi
  • 守望的天空《守望的天空》(英文:Watch Sky),2012年2月16在深圳电视台都市频道首播,3月14日上映于湖南电视台湖南卫视的现代情感励志剧。讲述了一个平凡的女子葡萄(李沁 饰),在母亲病逝后,独自
  • Z0Z0性别决定系统(英语:Z0 sex-determination system)是一个性别决定系统,常见于几种飞蛾。在这些物种中,雄性有两个Z的染色体,而雌性中有一个。
  • 高溴酸盐高溴酸盐是高溴酸形成的盐类,含有四面体型的高溴酸根离子—BrO4−,其中溴的氧化态为+7。虽然同样是卤素,但不同于高氯酸和高碘酸,高溴酸盐非常难制备(包括高溴酸)。 高溴酸根离子
  • 鸣梁《鸣梁海战》(韩语:명량;又译《鸣梁:旋风之海》)是一部2014年上映的韩国古装战争电影,首次将万历朝鲜之役时期李舜臣率军以十二艘板屋船击退三百三十余艘日舰,取得胜利的鸣梁海战搬