椭球面

✍ dations ◷ 2025-07-31 22:41:08 #椭球面
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中 + θ ′ {displaystyle {color {white}+}!!!theta {color {white}'},!} 是天顶角, + φ − {displaystyle {color {white}+}!!!varphi {color {white}!!!-},!} 是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中 β {displaystyle beta ,!} 是一点的参数纬度, + λ ′ {displaystyle {color {white}+}!!!lambda {color {white}'},!} 是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中 p ≈ 1.6075 {displaystyle papprox 1.6075,} 。这样相对误差最多为 1.061 {displaystyle 1.061,} %(Knud Thomsen公式); p = 8 5 = 1.6 {displaystyle p={frac {8}{5}}=1.6,} 的值对于接近于球的椭球较为适宜,其相对误差最多为 1.178 {displaystyle 1.178,} %(David W. Cantrell公式)。对于 a = b {displaystyle a=b,} 的情况,有一个精确的公式:c {displaystyle c,} 比 a {displaystyle a,} 和 b {displaystyle b,} 都小很多时,表面积近似等于 2 π a b . {displaystyle 2pi ab.,!} 。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径 d 2 {displaystyle {d_{2}}} 与 d 1 {displaystyle {d_{1}}} 可表示为d 1 , 2 2 = 8 ( 1 − z c 2 ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) ∑ i = 1 3 cos 2 ⁡ p i r i 2 ± ( ∑ i = 1 3 cos 2 ⁡ p i r i 2 ) 2 − 4 ( ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) / r 1 2 r 2 2 r 3 2 {displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中 ρ {displaystyle rho ,!} 是密度。均匀密度的椭球的转动惯量为:其中 I x x {displaystyle I_{mathrm {xx} },!} 、 I y y {displaystyle I_{mathrm {yy} },!} 和 I z z {displaystyle I_{mathrm {zz} },!} 分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。

相关

  • 芽孢杆菌目脂环酸杆菌科(英语:Alicyclobacillaceae)(Alicyclobacillaceae) 芽孢杆菌科(英语:Bacillaceae)(Bacillaceae) 显核菌科(英语:Caryophanaceae)(Caryophanaceae) 李斯特菌科(英语:Listeriaceae)(L
  • 杰米·加文斯基詹姆斯·沃纳·加文斯基(英语:James Werner "Jamie" Zawinski,1968年11月3日-),又名jwz,是一位美国黑客,知名于贡献自由软件项目Mozilla、XEmacs,以及早期版本的Netscape Navigator网
  • 消费者消费者(英文:Consumer),指任何使用经济里产生的商品和服务的个人或组织。在经济体系中,消费者是在决定交易与否中表现的效用。消费者指支付消费品和服务的人。因此,消费者在一个国
  • 斯托达特詹姆斯·弗雷泽·斯托达特爵士,FRS,FRSE,FRSC(英语:Fellow of the Royal Society of Chemistry)(英语:Sir James Fraser Stoddart,1942年5月24日-),苏格兰化学家,2016年凭借分子机器的设
  • 副教授教授,是一种高等教育体系中的职称。在中国汉、唐的大学中即设有此官职;在现代汉语、日语、及韩语的语境中,多作为英语“Professor”一词的同义语使用,指在现代高等教育机构(例如
  • 数理统计数理统计(英语:Mathematical statistics)是统计学的数学基础,从数学的角度去研究统计学,为各种应用统计学提供理论支持。
  • 马朱罗马朱罗是马绍尔群岛共和国的首都,人口有27797人(2011年)。马朱罗建于马绍尔群岛南部拉利克礁链(Ralik Chain)内的马朱罗环礁上,由64个岛组成。市内2万多人,主要从事渔业和服务商业
  • 拉纳克蓝芝士拉纳克蓝干酪产自苏格兰,由汉弗莱·艾林顿于1985年发明。拉纳克蓝干酪质地软滑如奶油,带有一阵香草味,盐味很重,干酪肉上有蓝绿色纹理。
  • 南宁白话南宁白话是粤语的一个次方言,属于粤语邕浔片,也是其代表性方言,主要分布在广西壮族自治区首府南宁市市区。南宁白话为舶来语,是由明清时期的广东粤商入邕带来的白话演变而成的,经
  • 法西斯党国家法西斯党(意大利语:Partito Nazionale Fascista,缩写为PNF)是意大利历史上的一个政党,由贝尼托·墨索里尼创建以通过政治形式表达法西斯主义。该政党于1922年“向罗马进军”,