首页 >
椭球面
✍ dations ◷ 2025-04-02 12:44:40 #椭球面
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中
+
θ
′
{displaystyle {color {white}+}!!!theta {color {white}'},!}
是天顶角,
+
φ
−
{displaystyle {color {white}+}!!!varphi {color {white}!!!-},!}
是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中
β
{displaystyle beta ,!}
是一点的参数纬度,
+
λ
′
{displaystyle {color {white}+}!!!lambda {color {white}'},!}
是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中
p
≈
1.6075
{displaystyle papprox 1.6075,}
。这样相对误差最多为
1.061
{displaystyle 1.061,}
%(Knud Thomsen公式);
p
=
8
5
=
1.6
{displaystyle p={frac {8}{5}}=1.6,}
的值对于接近于球的椭球较为适宜,其相对误差最多为
1.178
{displaystyle 1.178,}
%(David W. Cantrell公式)。对于
a
=
b
{displaystyle a=b,}
的情况,有一个精确的公式:c
{displaystyle c,}
比
a
{displaystyle a,}
和
b
{displaystyle b,}
都小很多时,表面积近似等于
2
π
a
b
.
{displaystyle 2pi ab.,!}
。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径
d
2
{displaystyle {d_{2}}}
与
d
1
{displaystyle {d_{1}}}
可表示为d
1
,
2
2
=
8
(
1
−
z
c
2
∑
i
=
1
3
r
i
2
sin
2
p
i
)
∑
i
=
1
3
cos
2
p
i
r
i
2
±
(
∑
i
=
1
3
cos
2
p
i
r
i
2
)
2
−
4
(
∑
i
=
1
3
r
i
2
sin
2
p
i
)
/
r
1
2
r
2
2
r
3
2
{displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中
ρ
{displaystyle rho ,!}
是密度。均匀密度的椭球的转动惯量为:其中
I
x
x
{displaystyle I_{mathrm {xx} },!}
、
I
y
y
{displaystyle I_{mathrm {yy} },!}
和
I
z
z
{displaystyle I_{mathrm {zz} },!}
分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。
相关
- 尚柏朗过滤器尚柏朗过滤器,或称巴斯德-尚柏朗过滤器,是由查理斯·尚柏朗于1884年发明的陶瓷制滤水器。其原理和伯克菲尔德过滤器(英语:Berkefeld filter)类似。该过滤器由陶瓷制的内外管构成
- 身体身体是每个生物的实体。身体是生物的外表,可表示该生物的健康程度,以致表示该生物是否死亡。人体主要组成部分有头、颈、躯干、双臂及双腿,另外包括呼吸、心血管、神经系统和其
- 世界自然遗产世界遗产(英语:World Heritage;法语:Patrimoine mondial),是一项由联合国支持、联合国教育科学文化组织负责执行的国际公约建制,以保存对全世界人类都具有杰出普遍性价值的自然或文
- .ao.ao(源自安哥拉共和国国名——葡萄牙语:“República de Angola”中单词“Angola”的缩写“Ago”)是互联网域名系统中为安哥拉共和国开设的国家及地区顶级域。安哥拉于加入联合
- 高雄市区铁路地下化高雄市区铁路地下化计划(简称高雄铁路地下化)为台湾铁路管理局台铁捷运化暨台铁立体化改建计划,也是中华民国政府继台北铁路地下化之后所兴建的第二座地下铁路,实际上共分为“高
- 创价学会创价学会(日语:創価学会〔創價學會〕/そうかがっかい Sōka gakkai ?)是源自日本的佛教系新兴宗教团体,信奉妙法莲华经,以日莲大圣人佛法和生命哲学为中心思想。成立于1930年,现
- ɖ浊卷舌塞音是辅音的一种,属塞音,通常用于一些口语中。用来表示这个辅音的标志是⟨ɖ⟩,而X-SAMPA的标志是⟨d`⟩。清卷舌塞音特点:当符号成对出现时,左边的是清音,右边的是浊音。
- 标签理论标签理论(Labeling Theory)是一个犯罪学理论,理论分支属于“犯罪社会学”。标签理论被用于说明部分人如何走上越来越严重的犯罪之路。澳洲的犯罪学家约翰·布莱特怀特是标签理
- 加勒特·哈丁加勒特·詹姆斯·哈丁(Garrett James Hardin,1915年4月21日-2003年9月14日)是美国一位生态学家。他对人口过多提出警告。他于1968年在《科学》期刊发表了一篇探讨“公地悲剧”的
- 新会话四邑方言或称冈州方言,即粤语支四邑片或称冈州片,主要分布于广东省江门市蓬江区、江海区、新会区、台山市、开平市、恩平市、鹤山市、珠海市斗门区、金湾区、中山市古镇镇以及