首页 >
椭球面
✍ dations ◷ 2025-09-16 08:40:23 #椭球面
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中
+
θ
′
{displaystyle {color {white}+}!!!theta {color {white}'},!}
是天顶角,
+
φ
−
{displaystyle {color {white}+}!!!varphi {color {white}!!!-},!}
是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中
β
{displaystyle beta ,!}
是一点的参数纬度,
+
λ
′
{displaystyle {color {white}+}!!!lambda {color {white}'},!}
是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中
p
≈
1.6075
{displaystyle papprox 1.6075,}
。这样相对误差最多为
1.061
{displaystyle 1.061,}
%(Knud Thomsen公式);
p
=
8
5
=
1.6
{displaystyle p={frac {8}{5}}=1.6,}
的值对于接近于球的椭球较为适宜,其相对误差最多为
1.178
{displaystyle 1.178,}
%(David W. Cantrell公式)。对于
a
=
b
{displaystyle a=b,}
的情况,有一个精确的公式:c
{displaystyle c,}
比
a
{displaystyle a,}
和
b
{displaystyle b,}
都小很多时,表面积近似等于
2
π
a
b
.
{displaystyle 2pi ab.,!}
。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径
d
2
{displaystyle {d_{2}}}
与
d
1
{displaystyle {d_{1}}}
可表示为d
1
,
2
2
=
8
(
1
−
z
c
2
∑
i
=
1
3
r
i
2
sin
2
p
i
)
∑
i
=
1
3
cos
2
p
i
r
i
2
±
(
∑
i
=
1
3
cos
2
p
i
r
i
2
)
2
−
4
(
∑
i
=
1
3
r
i
2
sin
2
p
i
)
/
r
1
2
r
2
2
r
3
2
{displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中
ρ
{displaystyle rho ,!}
是密度。均匀密度的椭球的转动惯量为:其中
I
x
x
{displaystyle I_{mathrm {xx} },!}
、
I
y
y
{displaystyle I_{mathrm {yy} },!}
和
I
z
z
{displaystyle I_{mathrm {zz} },!}
分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。
相关
- 酒精滥用酗酒(英语:alcoholism),又称酒精使用疾患(alcohol use disorder, AUD)或酒精依赖症候群(alcohol dependence syndrome),其为饮用酒精所致相关问题的广义用语,过去将之分成酒精滥用(英语
- 尼亚加拉瀑布尼亚加拉瀑布(英语:Niagara Falls,源自印第安语,意为“雷神之水”。加拿大的华人也称之为“拉格科”)是由三座位于北美洲五大湖区尼亚加拉河上瀑布的总称,平均流量为2,407立方米/
- 北洋军阀北洋军阀,是中华民国早期最重要的民国军阀势力之一,由袁世凯培植的北洋新军的主要将领组成,袁世凯执掌政权后,袁世凯的“北洋新军”的主要将领雄霸一方,在1916年袁世凯死后,因无人
- 缓和政策缓和政策(法语:Détente)或称低荡,原意为缓和紧张关系。在国际政治上,缓和政策指的是1960年代末期至1970年代末期期间,美国与苏联两国于军备竞赛、外交立场的基本态度,从紧张对立渐
- 急性细菌性前列腺炎急性细菌性前列腺炎(Acute Prostatitis)是由非特异性细菌引起的前列腺组织的急性炎症称之为急性细菌性前列腺炎。它是前列腺炎中的罕见类型。急性细菌性前列腺炎发病急,高热,尿
- 颗粒燃料颗粒燃料(英语:Pellet fuel)是从生物质压缩制成的供暖燃料。最常用类型是木颗粒。作为木头燃料的一种形式,木颗粒通常从锯木及其他木制品产生的压实的锯末或其他废物制成。其他
- 世界粮食会议第一次的世界粮食大会是由联合国粮食及农业组织(FAO)主持于1974年在罗马举行。在此次的会议上,当时的美国国务卿亨利·季辛吉表示在10年内将会没有孩子会饿著肚子上床睡觉。这
- 惠宗元惠宗妥懽贴睦尔(蒙古语: ᠲᠣᠭᠠᠨᠲᠡᠮᠦᠷ,鲍培转写:toγan temür,西里尔字母:Тогоонтөмөр;1320年5月25日-1370年5月23日),清刊《元史》、清修《续资治通鉴》改译托
- 林兰英林兰英(1918年-2003年),福建莆田人,中国物理学家,中国科学院院士。林兰英早年就学于莆田中学,后转入咸益女中学学习,之后考入福建协和大学物理系。在其师李来荣的支持下,留美就学于狄
- 植物体无机盐运送途径蒸腾流(英语:Transpiration stream)是维管束植物体中从根至叶的连续水流,植物从根部吸收水与无机盐后,经由木质部的导管(英语:Vessel element)运送到全株,并于叶以蒸腾作用或泌液作用