椭球面

✍ dations ◷ 2025-04-26 12:45:23 #椭球面
椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。使用球坐标系,其中 + θ ′ {displaystyle {color {white}+}!!!theta {color {white}'},!} 是天顶角, + φ − {displaystyle {color {white}+}!!!varphi {color {white}!!!-},!} 是方位角,则椭球可以表示为以下的参数形式:使用地理坐标系,其中 β {displaystyle beta ,!} 是一点的参数纬度, + λ ′ {displaystyle {color {white}+}!!!lambda {color {white}'},!} 是该点的经度:椭球的体积由以下公式给出:注意,当三个半径都相等时,这个公式便化为球的体积;两个半径相等时,便化为扁球面或长球面的体积。椭球的表面积由以下公式给出:其中与球的表面积不同,椭球的表面积一般不能用初等函数来表示。一个近似公式为:其中 p ≈ 1.6075 {displaystyle papprox 1.6075,} 。这样相对误差最多为 1.061 {displaystyle 1.061,} %(Knud Thomsen公式); p = 8 5 = 1.6 {displaystyle p={frac {8}{5}}=1.6,} 的值对于接近于球的椭球较为适宜,其相对误差最多为 1.178 {displaystyle 1.178,} %(David W. Cantrell公式)。对于 a = b {displaystyle a=b,} 的情况,有一个精确的公式:c {displaystyle c,} 比 a {displaystyle a,} 和 b {displaystyle b,} 都小很多时,表面积近似等于 2 π a b . {displaystyle 2pi ab.,!} 。椭球与平面相交的横截面为椭圆。如右图所示,椭圆的两个直径 d 2 {displaystyle {d_{2}}} 与 d 1 {displaystyle {d_{1}}} 可表示为d 1 , 2 2 = 8 ( 1 − z c 2 ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) ∑ i = 1 3 cos 2 ⁡ p i r i 2 ± ( ∑ i = 1 3 cos 2 ⁡ p i r i 2 ) 2 − 4 ( ∑ i = 1 3 r i 2 sin 2 ⁡ p i ) / r 1 2 r 2 2 r 3 2 {displaystyle {d_{1,2}^{2}}={{8(1-{z_{c}^{2} over {sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i}}})} over {sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}}}pm {sqrt {(sum _{i=1}^{3}{cos ^{2}p_{i} over {r_{i}^{2}}})^{2}-4(sum _{i=1}^{3}r_{i}^{2}sin ^{2}p_{i})/r_{1}^{2}r_{2}^{2}r_{3}^{2}}}}}如果我们对球使用可逆的线性变换,便可以得到一个椭球;它可以用旋转的方法来化成以上标准的形式,这是谱定理的结果。如果该线性变换用一个对称的3乘3矩阵来表示的话,那么这个矩阵的特征向量就是正交的(根据谱定理),它表示了轴的方向:而半轴的长度则由特征值给出。椭球与平面的交集是空集、一个点,或一个椭圆。我们也可以利用经过线性变换的球来定义多维空间的椭球,并使用谱定理来得出一个标准方程。均匀密度的椭球的质量为:其中 ρ {displaystyle rho ,!} 是密度。均匀密度的椭球的转动惯量为:其中 I x x {displaystyle I_{mathrm {xx} },!} 、 I y y {displaystyle I_{mathrm {yy} },!} 和 I z z {displaystyle I_{mathrm {zz} },!} 分别是关于x、y和z轴的转动惯量。惯性积为零。容易知道,如果a=b=c,那么上述公式便化为均匀密度的球的转动惯量。反过来,如果知道了一个任意刚体的质量和主惯性矩,那么就可以构造出一个等价的均匀密度的椭球,使用以下特征:鸡蛋的形状可以近似地认为是半个长球面与半个球在赤道处相拼合而成,共用一个旋转对称的主轴。虽然鸡蛋形通常意味着在赤道平面没有反射对称,它也可以用来指真正的长球面。它也可以用来描述相应的二维图形。参见鹅蛋形。

相关

  • 肺脏肺是很多进行空气呼吸的动物的呼吸系统中重要的一个器官,大部分四足类动物、一些鱼类和蜗牛都有肺。哺乳动物和其他身体结构较为复杂的动物则拥有两个肺,其位于胸腔中靠近脊柱
  • 扣子体扣子体(英语:clamp connection)是许多担子菌门真菌的双核菌丝顶端形成的钩状结构。担子菌有性生殖的过程中,两株真菌的菌丝会进行胞质融合,但细胞核维持独立,形成具有来自两亲代细
  • 宇宙空间外层空间,亦称外太空、宇宙空间,简称空间、外空或太空(英语:outer space),指的是地球大气层及其他天体之外的虚空区域。与真空有所不同的是,外层空间含有密度很低的物质,以等离子态
  • 艾恩德霍芬埃因霍温(荷兰语:Eindhoven)又译埃因霍温、爱因荷芬,旧译名安恒,是一个位于荷兰南部北布拉班特省的市镇,是荷兰的第五大城市。埃因霍温是欧洲领先的科技中心之一,地处西欧悠久科技
  • 聚对苯二甲酸丁二酯聚对苯二甲酸丁二酯(Polybutylene terephthalate,简写作PBT)是一种热塑性的工程聚合物,可用于电气或电子产品的绝缘体。聚对苯二甲酸丁二酯是一种(半)结晶聚合物,是聚酯的一种。聚
  • 仍孙孙是指子女的子女,男性称孙儿或孙子,女性称孙女。在父系社会,儿子的子女称为“内孙”或者“孙”,女儿的子女称为“外孙”。而自己的孙或外孙就称自己为祖父母或外祖父母。另外,闽
  • 歌德复兴式哥特复兴式的建筑风格始于1740年代的英格兰。19世纪初,当时的主流是新古典式建筑,但崇尚哥特式建筑风格的人则试图复兴中世纪的建筑形式。哥特复兴运动对英国以至欧洲大陆,甚至
  • span class=nowrapErClsub3/sub/span氯化铒是一种无机化合物,化学式为ErCl3。它是紫色固体,可用于制备金属铒。氯化铒可以和氢氧化钠反应,生成氢氧化铒:
  • Bacillus cereus蜡样芽孢杆菌(学名:Bacillus cereus),又称仙人掌杆菌,是一种革兰氏阳性菌,β溶血性的杆状细菌 。经常在土壤和食物中被发现,有些菌株会引起食物中毒,例如"炒饭综合症"(Fried Rice Syn
  • 相对论性质量质量这一名词在狭义相对论中通常是指物质在静止时所测量的质量(静质量)。这个意义的质量与牛顿力学的质量相同。不变质量是静质量的另一名称,但它通常是指由许多粒子构成的系统