首页 >
色差
✍ dations ◷ 2025-08-29 10:41:08 #色差
色差(英语:Chromatic Aberration,简称CA)是指光学上透镜无法将各种波长的色光都聚焦在同一点上的现象。它的产生是因为透镜对不同波长的色光有不同的折射率(色散现象)。对于波长较长的色光,透镜的折射率较低。在成像上,色差表现为高光区与低光区交界上呈现出带有颜色的“边缘”,这是由于透镜的焦距与折射率有关,从而光谱上的每一种颜色无法聚焦在光轴上的同一点。色差可以是纵向的,由于不同波长的色光的焦距各不相同,从而它们各自聚焦在距离透镜远近不同的点上;色差也可以是横向或平行排列的,由于透镜的放大倍数也与折射率有关,此时它们会各自聚焦在焦平面上不同的位置。在人们使用透镜的最早期,减小色差的方法是尽可能地增加透镜的焦距。这样的例子包括十七世纪由惠更斯设计的航空望远镜,这是一种镜身极长的折射望远镜。牛顿建立的白光是由多种色光组成的理论使他得出结论,不同色光的折射率不同是导致产生色差的原因。他从而于1668年发明了牛顿反射望远镜。在透镜的成像中存在一点,被称作最小模糊圆,在那里色差可以被降低到最小。如果使用消色差透镜则可进一步降低色差,消色差透镜是用不同折射率和色散的材料组合构成的复合透镜。最常见的复合透镜是双合透镜,其组成为冕牌玻璃和燧石玻璃。这种方法虽然不能完全消除色差,但可以使色差在一段特定的波长范围内得到有效降低。若将两个以上透镜合并使用,这种消除色差的效果可得到进一步提升,例如复消色差透镜。消色差透镜的应用在光学显微镜和望远镜的发展中是很重要的一个进步。此外,多种类型的玻璃制造都基于了降低色差的考虑,其中最著名的例子是含有萤石成分的玻璃被广泛应用在镜头中。这种混合型的玻璃具有非常低的光学色散特性,仅采用两块这种玻璃组成的复合透镜就可以达到很高的消色差效果。除了消色差双合透镜外,采用衍射光学器件也可达到消色差的目的。衍射光学器件对于光学玻璃和塑料的色散特性有抵消效果。在可见光波段,衍射对应的阿贝数大约在-3.5。衍射光学器件的制造可以通过金刚石切削技术来进行。单球面的色差由下式给出:"L色"=
y
∗
n
∗
i
n
′
[
k
]
∗
u
′
[
k
]
2
∗
(
Δ
n
n
−
Δ
n
′
n
′
)
{displaystyle {frac {y*n*i}{n'*u'^{2}}}*({frac {Delta n}{n}}-{frac {Delta n'}{n'}})}
。其中同轴球面系的色差由下式给出:"L'色"=L色"*
n
[
1
]
∗
u
[
1
]
2
n
′
[
k
]
∗
u
′
[
k
]
2
+
{displaystyle {frac {n*u^{2}}{n'*u'^{2}}}+}
∑
y
∗
n
∗
i
n
′
∗
u
′
2
∗
(
Δ
n
n
−
Δ
n
′
n
′
)
{displaystyle sum {frac {y*n*i}{n'*u'^{2}}}*({frac {Delta n}{n}}-{frac {Delta n'}{n'}})}
。同轴薄透镜系的色差由下式给出:"L'色"=L色"*
u
[
1
]
2
u
′
[
k
]
2
{displaystyle {frac {u^{2}}{u'^{2}}}}
−
1
u
′
[
k
]
∗
∑
y
2
f
∗
V
{displaystyle -{frac {1}{u'}}*sum {frac {y^{2}}{f*V}}}
。薄透镜的近轴色差由下式给出:"L色"=
−
l
′
2
f
∗
V
{displaystyle -{frac {l'^{2}}{f*V}}}其中 f 为薄透镜的焦距,V为阿贝数,l'为像距。当物体在无穷远时, l'=f,于是"L色"=
−
f
V
{displaystyle -{frac {f}{V}}}对于由两个薄透镜拼接成的双合透镜,人们采用透镜材料的阿贝数来计算双合透镜的合适焦距,从而来保证消色差的准确性。假设对黄色的夫琅禾费D线(589.2纳米),两个薄透镜的焦距分别为
f
1
{displaystyle f_{1},}
和
f
2
{displaystyle f_{2},}
,则消色差条件为:f
1
=
f
∗
V
1
−
V
2
V
1
{displaystyle f_{1}=f*{frac {V_{1}-V_{2}}{V_{1}}}}f
2
=
f
∗
V
2
−
V
1
V
2
{displaystyle f_{2}=f*{frac {V_{2}-V_{1}}{V_{2}}}}由此,消色差效果满足条件:其中
V
1
{displaystyle V_{1},}
和
V
2
{displaystyle V_{2},}
分别是两个透镜材料的阿贝数。由于通常意义的阿贝数都是正值,则两个焦距之一必须为负值,即透镜之一需为凹透镜。从而双合透镜的总焦距的倒数等于两个薄透镜的焦距倒数之和:这一条件能保证这一焦距对应着蓝色的夫琅禾费F线(486.1纳米)和红色的夫琅禾费C线(656.3纳米),而对于其他波长的可见光,焦距只是近似等于这个值。例子;冕牌玻璃 "V1 =60,燧石玻璃V2=36,f=5厘米
得 冕牌玻璃凸透镜 焦距 f1=3厘米,燧石玻璃凹透镜焦距 f2:=-7.5厘米。上列关于消色差的讨论是针对F线和C线的,二黄D线的焦距就会短些,蓝g线的焦距就会长了些。在C、F线消色差的情况下,其他谱线的偏差称为二次色差。在图像的后期处理中,消色差的方法通常为缩放边缘颜色通道,或减去部分缩放后的边缘通道。对有些镜头而言,产生色差的程度和相机焦平面上接收到的成像的矩形几何有很复杂的关联,因此通过几何上的处理来矫正色差可能会很困难。而后期软件则很有可能不具备足够的复杂性和数据来正确地对图像进行矫正,即使是当受影响的成像物体近似位于同一焦平面上。所有采用CMOS感光器的尼康数字单反相机,以及所有松下采用微4/3系统的Lumix系列相机,在机内直出JPEG图像时都会进行上述处理。而尼康数字单反相机还会将矫正数据保存在RAW格式图像中,以便后期软件使用。在摄影中,“紫边”一词经常用来替代色差,不过并不是所有的紫边都是由于色差产生的:镜头耀光也有可能在高光区周围产生类似的颜色边缘。对数位相机而言,高光区或暗部周围的颜色边缘也有可能来自感光器,这是由于对不同的颜色感光器具有不同的动态范围或灵敏度,从而导致它能够对一两个通道保留细节,而造成剩余通道超出动态范围而无法寄存。此外,机内的某些去马赛克算法也有可能对紫边的产生程度有所影响。还有一个产生紫边的原因来自很微小的微透镜的色差,这些微透镜的作用是使CCD或CMOS上的每一个像素接受到更多的光。这些微透镜是对绿光正确对焦的,从而对红光和蓝光无法正确对焦而在高光区边缘产生紫边。对于各种画幅的相机这都是个普遍问题,而有些相机采用像素间距很小的CCD感光器(如便携型相机),这种问题更为突出。针对这一问题,松下的Lumix系列以及较新的尼康数字单反相机有特别的机内处理。在黑白摄影中,色差的影响也不可忽视:虽然在图像中只有灰度没有颜色,色差会使画面变得模糊。此时可用窄带颜色滤波的方法降低色差,或者将一个单一颜色通道转为黑白。不过这种方法往往需要很长的曝光时间(当然,这只是对全色的黑白胶片而言的,因为正色胶片仅对有限的频谱感光。)
相关
- 利德尔综合症李德尔氏综合征(Liddle's syndrome、假性醛固酮增多症)是常染色体显性遗传(Dominance (genetics))疾病、特征在于早期频繁严重的高血压,以及与低血浆肾素活性、代谢性碱中毒(
- 囊状噬菌体科囊状噬菌体属囊状噬菌体科Cystoviridae
- 原发疫源地指示病例(英语:index case),又称为原发病例(英语:primary case),俗称零号病人或零号感染源(英语:patient zero),在流行病学调查中是指在一定人群中的最初的病例。指示病例可能表示疾病的
- 量子力学量子力学(英语:quantum mechanics)是物理学的分支学科。它主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、
- 群体遗传学现代生物分类群体从它们的 共同祖先遗传分化的图示。进化论介绍(英语:Introduction to evolution) 演化的证据 共同起源 共同起源的证据群体遗传学 · 遗传多样性 突变 · 自
- 比萨共和国比萨共和国(意大利文:Repubblica di Pisa;11世纪─1406年,1494年─1509年)是中世纪与文艺复兴时期的独立国家,位于今意大利中部托斯卡纳的比萨市一带。当时比萨是商业枢纽,其商人在
- 棘龙科棘龙科(学名:Spinosauridae)是群独特的兽脚亚目恐龙。是一群兽脚类恐龙,比较有名的棘龙生活在阿尔布到森诺曼阶,约112至97百万年前。它们是群相当大型的二足掠食动物,拥有修长、类
- 系统地理学系统地理学(Systematic geography)是地理学四大分类的其中之一,也是地理学的主干。系统地理学可再分为自然地理学和人文地理学。大多数的地理学研究都是在系统地理学中的各分类
- 菲茨杰拉德弗朗西斯·斯科特·基·菲茨杰拉德(英语:Francis Scott Key Fitzgerald,1896年9月24日-1940年12月21日),大陆译作弗朗西斯·斯科特·菲茨杰拉德,繁体译作費茨傑羅,简称斯科特·菲茨
- VBCI步兵战车VBCI步兵坦克(法语:Véhicule Blindé de Combat d'Infanterie)为新一代法国轮式步兵战车。VBCI的车体由铝合金制造,外部覆盖特种钢和钛合金模块装甲。底盘为8x8全驱动结构,具有