本构关系

✍ dations ◷ 2025-02-26 05:15:16 #物质内的电场和磁场,电动力学

在电磁学里,为了要应用宏观麦克斯韦方程组,必须分别找到 D {\displaystyle \mathbf {D} } 场与 E {\displaystyle \mathbf {E} } 场之间,和 H {\displaystyle \mathbf {H} } 场与 B {\displaystyle \mathbf {B} } 场之间的关系。这些称为本构关系的物理性质,设定了束缚电荷和束缚电流对于外场的响应。它们实际地对应于,一个物质响应外场作用而产生的电极化或磁化。:44-45

本构关系式的基础建立于 D {\displaystyle \mathbf {D} } 场与 H {\displaystyle \mathbf {H} } 场的定义式:

其中, P {\displaystyle \mathbf {P} } 是电极化强度, M {\displaystyle \mathbf {M} } 是磁化强度。

本构关系式的一般形式为

在解释怎样计算电极化强度与磁化强度之前,最好先检视一些特别案例。

假设,在自由空间(即理想真空)里,就不用考虑介电质和磁化物质,本构关系式变得很简单::2

将这些本构关系式代入宏观麦克斯韦方程组,则得到的方程组很像微观麦克斯韦方程组,当然,在得到的高斯定律方程和麦克斯韦-安培方程内,总电荷密度和总电流密度分别被自由电荷密度和自由电流密度替代。这符合期待的结果,因为,在自由空间里,没有束缚电荷、束缚电流和极化电流。

对于线性、各向同性物质,本构关系式也很直接:

其中, ε {\displaystyle \varepsilon } 是物质的电容率, μ {\displaystyle \mu } 是物质的磁导率。

将这些本构关系式代入宏观麦克斯韦方程组,可以得到方程组

除非这物质是均匀物质,不能从微分式或积分式内提出电容率和磁导率。通量 Φ ε E {\displaystyle \Phi _{\varepsilon \mathbf {E} }} 的方程为

这方程组很像微观麦克斯韦方程组,当然,在得到的高斯定律方程和麦克斯韦-安培方程内,自由空间的电容率和磁导率分别被物质的电容率和磁导率替代;还有,总电荷密度和总电流密度分别被自由电荷密度和自由电流密度替代。这符合期待的结果,因为,在均匀物质内部,没有束缚电荷、束缚电流和极化电流,虽然由于不连续性,可能在表面会有面束缚电荷、面束缚电流或面极化电流。

对于实际物质,本构关系并不是简单的线性关系,而是只能近似为简单的线性关系。从 D {\displaystyle \mathbf {D} } 场与 H {\displaystyle \mathbf {H} } 场的定义式开始,要找到本构关系式,必需先知道电极化强度和磁化强度是怎样从电场和磁场产生的。这可能是由实验得到(建立于直接测量),或由推论得到(建立于统计力学、传输力学(transport phenomena)或其它凝聚态物理学的理论)。所涉及的细节可能是宏观或微观的。这都要视问题的层级而定。

虽然如此,本构关系式通常仍旧可以写为

不同的是, ε {\displaystyle \varepsilon } μ {\displaystyle \mu } 不再是简单常数,而是函数。例如,

实际而言,在某些特别状况,一些物质性质给出的影响微乎其微,这允许物理学者的忽略。例如,在低场强度状况,光学非线性性质可以被忽略;当频率局限于狭窄带宽内时,色散不重要;对于能够穿透物质的波长,物质吸收可以被忽略;对于微波或更长波长的电磁波,有限电导率的金属时常近似为具有无穷大电导率的完美金属(perfect metal),形成电磁场穿透的趋肤深度为零的硬障碍。

随着材料科学的进步,材料专家可以设计出具有特定的电容率或磁导率的新材料,像光子晶体。

通常而言,感受到局域场施加的洛伦兹力,介质的分子会有所响应,从相关的理论计算,可以得到这介质的本构关系式。除了洛伦兹力以外,可能还需要给出其它作用力的理论模型,像涉及晶体内部晶格振动的键作用力,将这些作用力纳入考量,一并计算。

在介质内部任意分子的位置 r {\displaystyle \mathbf {r} } ,其邻近分子会被电极化和磁化,从而造成其局域场会与外场或宏观场不同。更详尽细节,请参阅克劳修斯-莫索提方程。真实介质不是连续性物质,其局域场在原子尺度的变化相当剧烈,必需经过空间平均,才能形成连续近似。

这连续近似问题时常需要某种量子力学分析,像应用于凝聚态物理学的量子场论。请参阅密度泛函理论和格林-库波关系式(Green–Kubo relations)等等案例。物理学者研究出许多近似传输方程,例如,玻尔兹曼传输方程(Boltzmann transport equation)、佛克耳-普朗克方程(Fokker–Planck equation)和纳维-斯托克斯方程。这些方程已经广泛地应用于流体动力学、磁流体力学、超导现象、等离子模型(plasma modeling)等等学术领域。一整套处理这些艰难问题的物理工具已被成功地发展出来。另外,从处理像砾岩(conglomerate)或叠层材料(laminate)一类物质的传统方法演变出来的“均质化方法”,是建立于以“均质有效介质”来近似“非均质介质”的方法。当激发波长超大于非均质性的尺度时,这方法正确无误。

理论得到的答案必须符合实验测量的数据。许多真实物质的连续近似性质,是靠着实验测量而得到的。例如,应用椭圆偏振技术得到的薄膜的介电性质。

相关

  • 两栖爬行动物学动物学人类学 · 人与动物关系学 蜜蜂学 · 节肢动物学 医学节肢动物学 · 鲸类学 贝类学 · 昆虫学 动物行为学 · 蠕虫学 两栖爬行动物学 · 鱼类学 软体动物学 · 哺乳动
  • span class=nowrapNpClsub4/sub/span四氯化镎或氯化镎(IV),是一种无机化合物,易潮解,化学式NpCl4,有强放射性。四氯化镎可由二氧化镎或草酸镎(IV)在含有四氯化碳蒸汽的氯气流中加热至450℃(或500℃在四氯化碳中加热
  • 老手《老手》(或称《Veteran》;韩语:베테랑)是2015年上映的一部韩国警匪动作片,由柳承完(柳承范的哥哥)执导《柏林谍变》和《新村僵尸漫画》等电影的导演指导,该片讲述的是犯下罪行的财
  • MotionElementsMotionElements 是一个提供免版税影音素材的网络平台,授权的素材有影片素材、背景音乐素材、Adobe After Effects 模板、Apple Motion 模板以及动态GIF。MotionElements 创建
  • 重铬酸铵重铬酸铵是一种橘色的晶体,分子式为(NH4)2Cr2O7,可用于印染、茜素合成、铬明矾制造、石油精制,制造鞣革、香料、照像药品、烟火、陶瓷等。重铬酸铵加热至150 °C可爆炸分解为
  • 齐格尔湖 (默尔恩)坐标:53°37′42″N 10°40′44″E / 53.62828°N 10.67896°E / 53.62828; 10.67896齐格尔湖(德语:Ziegelsee),是德国的湖泊,位于该国北部石勒苏益格-荷尔斯泰因州,由劳恩堡县负责
  • AMD Phenom IIPhenom II是AMD生产的45奈米制程多核心处理器的一个家族,是原Phenom处理器的后继者。Phenom II的Socket AM2+版本于2008年12月推出,而支持DDR3存储器的Socket AM3版本则于2009
  • 苏琪·沃特豪斯苏琪·沃特豪斯(英语:Suki Waterhouse,1992年1月5日-)是一名英国女演员、模特儿、歌手和创业家。于00至10年代中出演过的作品中较著名的是在浪漫电视剧《物质女孩》(2010年)中饰演L
  • 葛一虹葛一虹(1913年4月2日-2005年4月26日),笔名黄芜茵,男,上海嘉定人,中国戏剧理论家、翻译家,中国戏剧家协会理事,曾任中国艺术研究院话剧研究所所长。
  • 王瑶卿王瑶卿(1881年-1954年),名瑞臻,字稚庭,号菊痴,艺名瑶卿,斋名古瑁轩,晚年改作瑶青,原籍江苏清江(淮阴),生于北京,清末民国京剧旦角演员、戏曲教育家。其弟王凤卿。1881年(清光绪七年)生于北京