本构关系

✍ dations ◷ 2025-09-14 07:12:23 #物质内的电场和磁场,电动力学

在电磁学里,为了要应用宏观麦克斯韦方程组,必须分别找到 D {\displaystyle \mathbf {D} } 场与 E {\displaystyle \mathbf {E} } 场之间,和 H {\displaystyle \mathbf {H} } 场与 B {\displaystyle \mathbf {B} } 场之间的关系。这些称为本构关系的物理性质,设定了束缚电荷和束缚电流对于外场的响应。它们实际地对应于,一个物质响应外场作用而产生的电极化或磁化。:44-45

本构关系式的基础建立于 D {\displaystyle \mathbf {D} } 场与 H {\displaystyle \mathbf {H} } 场的定义式:

其中, P {\displaystyle \mathbf {P} } 是电极化强度, M {\displaystyle \mathbf {M} } 是磁化强度。

本构关系式的一般形式为

在解释怎样计算电极化强度与磁化强度之前,最好先检视一些特别案例。

假设,在自由空间(即理想真空)里,就不用考虑介电质和磁化物质,本构关系式变得很简单::2

将这些本构关系式代入宏观麦克斯韦方程组,则得到的方程组很像微观麦克斯韦方程组,当然,在得到的高斯定律方程和麦克斯韦-安培方程内,总电荷密度和总电流密度分别被自由电荷密度和自由电流密度替代。这符合期待的结果,因为,在自由空间里,没有束缚电荷、束缚电流和极化电流。

对于线性、各向同性物质,本构关系式也很直接:

其中, ε {\displaystyle \varepsilon } 是物质的电容率, μ {\displaystyle \mu } 是物质的磁导率。

将这些本构关系式代入宏观麦克斯韦方程组,可以得到方程组

除非这物质是均匀物质,不能从微分式或积分式内提出电容率和磁导率。通量 Φ ε E {\displaystyle \Phi _{\varepsilon \mathbf {E} }} 的方程为

这方程组很像微观麦克斯韦方程组,当然,在得到的高斯定律方程和麦克斯韦-安培方程内,自由空间的电容率和磁导率分别被物质的电容率和磁导率替代;还有,总电荷密度和总电流密度分别被自由电荷密度和自由电流密度替代。这符合期待的结果,因为,在均匀物质内部,没有束缚电荷、束缚电流和极化电流,虽然由于不连续性,可能在表面会有面束缚电荷、面束缚电流或面极化电流。

对于实际物质,本构关系并不是简单的线性关系,而是只能近似为简单的线性关系。从 D {\displaystyle \mathbf {D} } 场与 H {\displaystyle \mathbf {H} } 场的定义式开始,要找到本构关系式,必需先知道电极化强度和磁化强度是怎样从电场和磁场产生的。这可能是由实验得到(建立于直接测量),或由推论得到(建立于统计力学、传输力学(transport phenomena)或其它凝聚态物理学的理论)。所涉及的细节可能是宏观或微观的。这都要视问题的层级而定。

虽然如此,本构关系式通常仍旧可以写为

不同的是, ε {\displaystyle \varepsilon } μ {\displaystyle \mu } 不再是简单常数,而是函数。例如,

实际而言,在某些特别状况,一些物质性质给出的影响微乎其微,这允许物理学者的忽略。例如,在低场强度状况,光学非线性性质可以被忽略;当频率局限于狭窄带宽内时,色散不重要;对于能够穿透物质的波长,物质吸收可以被忽略;对于微波或更长波长的电磁波,有限电导率的金属时常近似为具有无穷大电导率的完美金属(perfect metal),形成电磁场穿透的趋肤深度为零的硬障碍。

随着材料科学的进步,材料专家可以设计出具有特定的电容率或磁导率的新材料,像光子晶体。

通常而言,感受到局域场施加的洛伦兹力,介质的分子会有所响应,从相关的理论计算,可以得到这介质的本构关系式。除了洛伦兹力以外,可能还需要给出其它作用力的理论模型,像涉及晶体内部晶格振动的键作用力,将这些作用力纳入考量,一并计算。

在介质内部任意分子的位置 r {\displaystyle \mathbf {r} } ,其邻近分子会被电极化和磁化,从而造成其局域场会与外场或宏观场不同。更详尽细节,请参阅克劳修斯-莫索提方程。真实介质不是连续性物质,其局域场在原子尺度的变化相当剧烈,必需经过空间平均,才能形成连续近似。

这连续近似问题时常需要某种量子力学分析,像应用于凝聚态物理学的量子场论。请参阅密度泛函理论和格林-库波关系式(Green–Kubo relations)等等案例。物理学者研究出许多近似传输方程,例如,玻尔兹曼传输方程(Boltzmann transport equation)、佛克耳-普朗克方程(Fokker–Planck equation)和纳维-斯托克斯方程。这些方程已经广泛地应用于流体动力学、磁流体力学、超导现象、等离子模型(plasma modeling)等等学术领域。一整套处理这些艰难问题的物理工具已被成功地发展出来。另外,从处理像砾岩(conglomerate)或叠层材料(laminate)一类物质的传统方法演变出来的“均质化方法”,是建立于以“均质有效介质”来近似“非均质介质”的方法。当激发波长超大于非均质性的尺度时,这方法正确无误。

理论得到的答案必须符合实验测量的数据。许多真实物质的连续近似性质,是靠着实验测量而得到的。例如,应用椭圆偏振技术得到的薄膜的介电性质。

相关

  • 怀孕试验妊娠试验是一种测试女性是否已经受孕的试验。最早的妊娠试验是针对早孕因子(英语:GroES)(简称EPF)进行玫瑰花结抑制分析(rosette inhibition assay)。早孕因子可以在受精后48小时从
  • 深静脉栓塞深静脉血栓是在深静脉形成的血栓,常形成于下肢或骨盆部位深处的静脉。有时也形成于上肢的静脉(这被称为Paget-Schrötter综合症(英语:Paget–Schroetter disease))。近期接受外科
  • 北京印刷学院北京印刷学院由北京市和新闻出版总署共建,是一所包括工、文、管、艺等多学科门类的全日制高等院校。在校学生7000余名。立足北京、服务首都、面向全国印刷、包装、出版及相关
  • 佩贾·斯托贾科维奇普雷德拉格·斯托亚科维奇(塞尔维亚-克罗地亚语:Предраг Стојаковић,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine"
  • 东洋东洋,或称东瀛,字面上的意思是指“东方的海洋”,在现代中文主要做为日本的别称,但在其他汉字文化圈语言则有不同的用法。在现代中文,“东洋”一词主要表示“日本”,偶尔也用于表示
  • 七星岩 (肇庆)坐标:23°04′21″N 112°28′05″E / 23.07250°N 112.46806°E / 23.07250; 112.46806七星岩位于中国广东省肇庆市端州区中南部,景区有“五湖、六岗、七岩、八洞”之称。湖
  • 霍赫费尔纳格特峰坐标:46°52′53″N 10°47′46″E / 46.88139°N 10.79611°E / 46.88139; 10.79611霍赫费尔纳格特峰(德语:Hochvernagtspitze),是奥地利的山峰,位于该国西部,由蒂罗尔州负责管辖,
  • 李天和李天和(Thomas H. Lee,1923年5月11日-2001年2月4日),出生于上海,美国华裔电工科学家。李天和早年曾就读于上海市南洋模范中学,后考入交通大学并于1946年毕业。此后赴美国留学,1950年
  • 牧田和久NPBMLB牧田 和久(まきた かずひさ、1984年11月10日-),出生于静冈县烧津市一位日本棒球选手,曾经效力于美国职棒大联盟圣地牙哥教士。26 渡边直人 | 73 野村克则 | 75 小山伸一郎
  • 山本舞香山本舞香(1997年10月13日-)出身于日本鸟取县,是一位日本女演员、时装模特儿,隶属于经纪公司incent旗下。山本舞香在2010年获刊载于地区性免费报纸《鸟取美少女图鉴(日语:美少女図鑑