线性

✍ dations ◷ 2025-10-06 21:26:56 #线性
在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。如果称一个数学函数 L ( x ) {displaystyle L(x)} 为线性的,可以是指:需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如 f ( x 1 , x 2 , . . . , x 2 ) = k 1 ∗ x 1 + k 2 ∗ x 2 + . . . + k n ∗ x n + b {displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b} 的函数(其中各个 k i {displaystyle k_{i}} 和 b {displaystyle b} 均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如 y = k ∗ x 2 {displaystyle y=k*x^{2}} (假定 k {displaystyle k} 是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得 log ⁡ y = log ⁡ ( k ∗ x 2 ) → log ⁡ y = log ⁡ k + 2 ∗ log ⁡ x {displaystyle log {y}=log {(k*x^{2})}rightarrow log {y}=log {k}+2*log {x}} ,作代换 y 1 = log ⁡ y , x 1 = 2 ∗ log ⁡ x , b = log ⁡ k {displaystyle y_{1}=log {y},x_{1}=2*log {x},b=log {k}} ,则可得 y 1 = b + 2 ∗ x 1 {displaystyle y_{1}=b+2*x_{1}} 。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。

相关

  • 主要死因之一下表所示为2002年全年对世界范围内的人类死亡及致死原因的统计,由上而下,按各致死原因导致的死亡人数在总死亡人数中所占比例排列。如该表所计,该年份世界死亡人口总数约为57,0
  • 整体词整体关系(英语:Holonymy)是一种语义关联。如果 A 是 B 的一部分,或 A 是 B 集合的成员,则称 B 是 A 的整体词,A 是 B 的分体词。例如,“树”是“树皮”的整体词,也是“树干”、“树
  • 神经系统神经系统是由神经元这种特化细胞的网络所构成的。其身体的不同部位间传递讯号。动物体藉神经系统和内分泌系统的作用来应付环境的变化。动物的神经系统控制着肌肉的活动,协调
  • 冥古宙冥古宙(Hadean),又称冥古代,是太古宙前的一个时期,可分为隐生代、盆地群代、酒神代和雨海代。开始于地球形成之初,结束于38亿年前,但依据不同的文献可能有不同的定义。冥古宙最初是
  • 意大利– æ¬§æ´²ï¼ˆæµ…ç»¿è‰²åŠæ·±ç°è‰²ï¼‰â€“ æ¬§ç›Ÿï¼ˆæµ…绿色)  —æ„大利共和å
  • 美国ç¾åˆ©åšåˆä¼—国(英语:United States of America,缩写为 U.S.A. 或 USA ,一般称为 United S
  • 动物学动物学人类学 · 人与动物关系学 蜜蜂学 · 节肢动物学 医学节肢动物学 · 鲸类学 贝类学 · 昆虫学 动物行为学 · 蠕虫学 两栖爬行动物学 · 鱼类学 软体动物学 · 哺乳动
  • 在很长一段时间里,界(Kingdom)是生物科学分类法中最高的类别。一开始人只将生物分为动物和植物两界,微生物被发现后,也长时期被分入动物或植物界:好动的微生物被分入动物界,有色素
  • 羊膜羊膜是羊膜动物(包括爬行动物,鸟类 和哺乳动物)的胚胎所具有的一种结构。其本质是一层封闭的生物膜,其内包裹着的空间称为羊膜囊,内含的液体称为羊水。羊膜的主要作用是保护胚胎
  • 夸休可尔症夸休可尔症(英语:Kwashiorkor),即恶性营养不良,又称蛋白質缺乏症,台湾亦称作红孩儿症,是一种营养不良症,其致病原因尚有争议,目前普遍认为是由于蛋白质摄入不足而导致。此病症通常发