首页 >
线性
✍ dations ◷ 2025-11-16 09:35:11 #线性
在现代学术界中,线性关系一词存在2种不同的含义。其一,若某数学函数或数量关系的函数图形呈现为一条直线或线段,那么这种关系就是一种线性的关系。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。如果称一个数学函数
L
(
x
)
{displaystyle L(x)}
为线性的,可以是指:需要注意这2种定义分别描述的是2类不同的事物。研究高等数学的数学家一般只认定义2(有例外,如高等数学“线性回归”理论中“线性函数”概念的定义),但初等数学和许多非数学学科的书籍会习惯把定义1当作线性关系的概念(有的没有明确给出定义,但确是如此理解和使用的)。这种术语间的细微差异如果不注意的话,就容易引起混淆。定义1的定义动机是把函数图像为直线的数量关系称作线性的关系。从这种几何意义出发,定义1本来不具有对多元函数进行推广的必要,因为形如
f
(
x
1
,
x
2
,
.
.
.
,
x
2
)
=
k
1
∗
x
1
+
k
2
∗
x
2
+
.
.
.
+
k
n
∗
x
n
+
b
{displaystyle f(x_{1},x_{2},...,x_{2})=k_{1}*x_{1}+k_{2}*x_{2}+...+k_{n}*x_{n}+b}
的函数(其中各个
k
i
{displaystyle k_{i}}
和
b
{displaystyle b}
均为常数)的图形根本不是直线,而是平面或超平面,因此也就谈不上“线”性了。但还是有这种做法出现,如有“多元线性方程组”的叫法(叫“多元超平面方程组”可能更合适)。但是,如果只考虑二维实数平面,则定义1可借由坐标移轴之后而符合定义2的型式。故要视定义1.为线性,实质上需要严格的限制条件,或者说,定义1其实是由定义2在受到某些条件限制下所产生的变化形式。在初等数学中(主要是与方程组及一次函数有关的理论),使用的是定义1。但在高等数学(尤其是纯数学)中所说的线性一般是用定义2来给出定义。如对线性相关和线性变换的定义。但初等数学中有关“线性”的一些习惯术语也然在高等数学沿用,如线性回归。在物理学中,线性的2种含义都有出现。“线性”如果是源于形容图像的形状,则其含义按定义1理解。比如线性元件的概念。一般在需要作图的实验物理学中会经常遇到这种含义,尤其是中学物理。“线性”如果是涉及数学分析学(比如说高等线性代数(即线性泛函分析)或微分方程理论)的概念,则其含义按定义2理解。一般在用到较多高深数学的理论物理学中会经常遇到这种含义。直线的图像容易分辨。斜率和截距通常也是变量的函数,通过测定斜率和截距,可以推知一些主要变量的数值。对于某些非直线的函数关系,比如
y
=
k
∗
x
2
{displaystyle y=k*x^{2}}
(假定
k
{displaystyle k}
是未知的常系数),如果要验证实验所得的数据是否符合该非线性关系式,直接描点连线作图是难以直观地判断出数据与假设关系式的接近程度的(画出来是个抛物线)。这时可以尝试使用变量替换的方法,把非线性关系转换为线性关系,从而便于作图,也便于判断。对等式两边同时取对数可得
log
y
=
log
(
k
∗
x
2
)
→
log
y
=
log
k
+
2
∗
log
x
{displaystyle log {y}=log {(k*x^{2})}rightarrow log {y}=log {k}+2*log {x}}
,作代换
y
1
=
log
y
,
x
1
=
2
∗
log
x
,
b
=
log
k
{displaystyle y_{1}=log {y},x_{1}=2*log {x},b=log {k}}
,则可得
y
1
=
b
+
2
∗
x
1
{displaystyle y_{1}=b+2*x_{1}}
。这时再作图,就容易看出数据和假设模型的偏离程度,还可以根据截距b估算出参数k的数值。这种将非线性关系转换为线性关系后再作图的方法只适用于少数函数,但因为作图的结果一目了然,所以是一种重要的数据处理方法。
相关
- 喘鸣喘鸣(英语:Wheeze, Sibilant Rhonchi),又称啰音,是指呼吸过程中呼吸道持续产生的粗糙声音。哮鸣发生的原因是由于呼吸道的某些部分缩小或被堵塞,亦可能是呼吸道内的气流速度提高。
- 闭塞性细支气管炎闭塞性细支气管炎(英语:Obliterative bronchiolitis (OB),缩写为OB;constrictive bronchiolitis;popcorn lung),是因为发炎造成肺部细支气管阻塞的疾病。症状包括干咳、呼吸急促、
- 超敏反应超敏反应(hypersensitivity),也叫变态反应,是免疫反应产生作用分子移除外来抗原的过程,这些作用分子诱导产生轻微、无临床症状或局部性的发炎反应,并不会对宿主造成组织伤害。特殊
- 内分泌学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学内分泌学,研究荷尔蒙,处理内分泌系统失
- 酒酿酒酿,又称醪醩,是一种可以家庭制作的并广泛流行于中国各地及朝鲜半岛的小吃,味道甜,有酒味,在陕西、四川、江浙、北京、云南等地及韩国深受欢迎,其中朝鲜半岛的醪糟称为甘酒。酒酿
- 生命演化历程生命演化历程纪录地球上生命发展过程中的主要事件。本条目中的时间表,是以科学证据为基础所做的估算。生物演化指生物的族群从一个世代到另一个世代之间,获得并传递新性状的过
- 限制修饰系统限制修饰系统(英语:Restriction modification system)是一种存在于细菌(可能还有其他原核生物),可保护个体免于外来DNA(如噬菌体)的侵入。有些细菌体内含有限制酶,可将双股DNA切断,之
- 丝状病毒丝状病毒科(学名:Filoviridae),单股反链病毒目,是一种感染脊椎动物的病毒,包含的属有埃博拉病毒和马尔堡病毒。病毒粒(Virion)具有复杂构造,具外套膜(envelope),核鞘(nucleocapsid),聚合酶
- 干扰素结构 / ECOD1b5l :24-187 1ovi :24-185 2hie :24-186 1itf :24-186 1au1B:22-187 2hif :24-182结构 / ECOD结构 / ECOD干扰素(英语:Interferon; IFNs; /ˌɪn
- 甲状腺机能亢进甲状腺功能亢进症(Hyperthyroidism),又称甲状腺机能亢进症,简称甲状腺亢进、甲亢,是一种由于体内过量的三碘甲腺原氨酸(T3)和 四碘甲腺原氨酸(T4,也即甲状腺素)造成的临床症状。而甲状
