极限

✍ dations ◷ 2025-04-25 00:36:44 #极限
极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。“函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。对于序列(sequence) a n = 1 n {displaystyle a_{n}={tfrac {1}{n}}} 随着n的增大, a n {displaystyle a_{n}} 从0的右侧越来越接近0,于是可以认为0是这个序列的极限(虽然这个结论是正确的,但是它仍需要证明)。柯西(Cauchy)在19世纪给出了极限的严格定义: 设 { x n } , x n ∈ R , n = 1 , 2 , … , x 0 ∈ R {displaystyle {x_{n}},x_{n}in mathrm {R} ,n=1,2,ldots ,x_{0}in mathrm {R} } ,对于任意的正实数 ϵ {displaystyle epsilon } ,存在自然数 N {displaystyle {mathit {N}}} ,使得当 n > N {displaystyle {mathit {n>N}}} 时,有 | x n − x 0 | < ϵ {displaystyle |x_{n}-x_{0}|<epsilon } ,用符号来表示即 ∀ ϵ > 0 , ∃ N ∈ N , ∀ n > N , | x n − x 0 | < ϵ {displaystyle forall epsilon >0,exists Nin mathbb {N} ,forall n>N,|x_{n}-x_{0}|<epsilon }则称数列 { x n } {displaystyle {x_{n}}} 收敛于 x 0 {displaystyle x_{0}} ,记作 lim n → ∞ x n = x 0 {displaystyle lim _{nto infty }x_{n}=x_{0}} 。直观地说,这就说明序列的元素(element)随着n的增大越来越靠近 x 0 {displaystyle x_{0}} ,因为上面的绝对值也可以用来刻画距离。当然这并不是说每一项都比前一项更为靠近。而且更一般地说,不是所有的序列都有极限的。如果一个序列是有极限的,我们称这个数列收敛,否则称其为发散。可以证明,如果一个序列是收敛的,那么它有且仅有一个极限。序列的极限和函数(function)的极限之间的关系是相当密切的。一方面,序列的极限可以直接理解为一个定义在自然数集合上的函数趋于无穷时候的极限。另一方面,一个函数在 x {displaystyle x} 处的极限(如果存在),与序列 { x n ∣ x n = f ( x + 1 n ) } {displaystyle {x_{n}mid x_{n}=f(x+{tfrac {1}{n}})}} 的极限是相同的。假设 f ( x ) {displaystyle f(x)} 是一个实函数, C {displaystyle C} 是一个实数,那么表示 f ( x ) {displaystyle f(x)} 可以任意地靠近 L {displaystyle L} ,只要我们让 x {displaystyle x} 充分靠近 c {displaystyle c} 。此时,我们说当 x {displaystyle x} 趋向 c {displaystyle c} 时,函数 f ( x ) {displaystyle f(x)} 的极限是 L {displaystyle L} 。值得特别指出的是,这个定义在 f ( c ) ≠ L {displaystyle f(c)neq L} 的时候同样是成立的。事实上,即使 f ( x ) {displaystyle f(x)} 在 c {displaystyle c} 点没有定义,我们仍然可以定义上述的极限。以下两个例子或许对理解这个概念有所帮助:考虑函数 f ( x ) = x x 2 + 1 {displaystyle f(x)={frac {x}{x^{2}+1}}} 在 x {displaystyle x} 趋向 2 {displaystyle 2} 的时候的性质,此时 f ( x ) {displaystyle f(x)} 在 x = 2 {displaystyle x=2} 这点是有定义的,因为 f ( 2 ) = 0.4 {displaystyle f(2)=0.4} 。当 x {displaystyle x} 趋向 2 {displaystyle 2} 的时候,函数值趋向 0.4 {displaystyle 0.4} ,因此我们有极限 lim x → 2 f ( x ) = 0.4 {displaystyle lim _{xto 2}f(x)=0.4} 。在这种情况下,即函数在某一点的取值和当 x {displaystyle x} 趋向这一点的极限值相同的时候,我们称 f {displaystyle f} 在 x = c {displaystyle x=c} 这一点是连续的。当然,这是相当特殊的情况,考虑那么当 x {displaystyle x} 趋于 2 {displaystyle 2} 的时候, g ( x ) {displaystyle g(x)} 的极限与前面的 f ( x ) {displaystyle f(x)} 相同,都是 0.4 {displaystyle 0.4} 。但是请注意 g ( 2 ) ≠ 0.4 {displaystyle g(2)neq 0.4} ,这就是说, g ( x ) {displaystyle g(x)} 在 x = 2 {displaystyle x=2} 是不连续。或者考虑这样一个例子,使得 f ( x ) {displaystyle f(x)} 在 x = c {displaystyle x=c} 时没有定义:当 x {displaystyle x} = 1 {displaystyle 1} 时, f ( x ) {displaystyle f(x)} 是没有定义的,但极限存在,即 lim x → 1 f ( x ) = 2 {displaystyle lim _{xto 1}f(x)=2} :在 x ≠ 1 {displaystyle xneq 1} 的情况下, x {displaystyle x} 可以任意靠近 1 {displaystyle 1} ,从而 f ( x ) {displaystyle f(x)} 的极限为 2 {displaystyle 2} 。形式上讲,极限可以这样定义:命 f {displaystyle f} 是一个定义于包含 c {displaystyle c} 的开区间(或此开区间剔除 c {displaystyle c} )上的实值函数,命 L {displaystyle L} 是一个实数,那么表示对于任意的 ε   > 0 {displaystyle varepsilon >0} ,都存在一个对应的 δ   > 0 {displaystyle delta >0} 使得:当 x {displaystyle x} 满足 0 < | x − c | < δ   {displaystyle 0<|x-c|<delta } 时总有 | f ( x ) − L | < ε   {displaystyle |f(x)-L|<varepsilon } 成立。与函数趋于某个给定值时的极限概念相关的是函数在无穷远处的概念。这个概念不能从字面上直接理解为: x {displaystyle x} 距离无穷远越来越小的状态,因为无穷不是一个给定的数,也不能比较距离无穷的远近。因此,我们用 x {displaystyle x} 越来越大(如果讨论正无穷时)来替代。例如考虑 f ( x ) = 2 x x + 1 {displaystyle f(x)={frac {2x}{x+1}}} .当 x {displaystyle x} 非常大的时候, f ( x ) {displaystyle f(x)} 的值会趋于 2 {displaystyle 2} 。事实上, f ( x ) {displaystyle f(x)} 与 2 {displaystyle 2} 之间的距离可以变得任意小,只要我们选取一个足够大的 x {displaystyle x} 就可以了。此时,我们称 f ( x ) {displaystyle f(x)} 趋向于(正)无穷时的极限是 2 {displaystyle 2} 。可以写为形式上,我们可以这样定义:类似地,我们也可以定义:如果考虑将 f {displaystyle f} 的定义域推广到扩展的实数轴,那么函数在无穷远的极限也可以看作在给定点的极限的特例。以下规则只有当等号右边的极限存在并且不为无穷时才成立在引入网的概念下,上述的定义可以毫无障碍地推广到任何拓扑空间。事实上,现代数学中的极限概念就是定义在拓扑空间上的,上述的例子都是拓扑空间的具体化。极限的符号为lim,它出自拉丁文limit(界限)的前三个字母。在1786年出版的德国人浏伊连(S. L'Huilier)的书中,第一次使用这个符号。不过,“x趋于a”当时都记作“x=a”,直到20世纪人们才逐渐用“→”替代“=”。英国近代数学家哈代是第一个使用现代极限符号的人。

相关

  • 血凝素血球凝集素(hemagglutinin)(C53H67N9O17) (TYR-PRO-TYR-ASP-VAL-PRO-ASP-TYR-ALA),是指可使红血球凝集的抗体或其他物质。在流感病毒、痳疹病毒(以及许多其他细菌和病毒)表面等均
  • 米利都米利都(希腊语:Μίλητος)是位于安纳托利亚西海岸线上的一座古希腊城邦,靠近米安得尔河口。它在赫梯文献中被称为Millawanda或者Milawata,在荷马的《伊利亚特》中也有出现。
  • 儿医学小儿科(或称儿科)是现代医学的一个分支,专门医疗患病的婴儿、儿童及青少年。最大的年龄通常至青春期。一个受到这方面知识专门训练的医生被称作儿科医生。
  • 二氧化铅二氧化铅或过氧化铅,化学式PbO2,常温时为棕色结晶或粉末,几乎不溶于水,有强氧化性。二氧化铅可由四氧化三铅与硝酸作用而得。反应式:二氧化铅受热分解:由于6s2惰性电子对效应,二氧
  • 系词系词(英语:copula、复数为copulas或copulae、英文简称:cop),又译为系动词、联系动词,在语言学上为表示用于与谓词(主语补语)链接一个句子之主词的字词,比如在一个句子"The sky is blu
  • 热成像热影像仪又称热像仪或红外线热成像仪等。是一种对物体散发出的红外线进行感光成像的设备,这种设备被广泛运用在军事、消防、医疗、工业生产、海关检查等领域。热成像仪是从对
  • 三级结构蛋白质三级结构(英语:Protein tertiary structure)是在生物化学里指蛋白质整体几何形状,亦称为其折叠。蛋白质分子是一连串的氨基酸一条线地接结,基本上假定其会有一可作用其生物
  • 脂肪酶脂酶,是一种催化脂类的酯键水解反应的水溶性酶。因此,脂酶是酯酶下的一个亚类。脂酶存在于基本上所有的生物体中,它在对脂类(如甘油三酸酯、脂肪、油等)的消化、运输和剪切中发挥
  • 柏金逊症帕金森病(Parkinson's disease,简称PD)是一种影响中枢神经系统的慢性神经退化疾病,主要影响运动神经系统。它的症状通常随时间缓慢出现,早期最明显的症状为颤抖、肢体僵硬、运动
  • 英法海底隧道英法海底隧道(英语:Channel Tunnel,亦称 Chunnel;法语:le tunnel sous la Manche,拉芒什海峡隧道)是一座50.5千米长的海底铁路隧道,位于英吉利海峡多佛尔水道下,连接英国的福克斯通和