极限

✍ dations ◷ 2025-04-03 10:53:22 #极限
极限是现代数学特别是分析学中的基础概念之一。极限可以用来描述一个序列的指标愈来愈大时,序列中元素的性质变化的趋势。极限也可以描述函数的自变量接近某一个值的时候,相对应的函数值变化的趋势。作为微积分和数学分析的其他分支最基本的概念之一,连续和导数的概念都是通过极限来定义的。“函数的极限”这个概念可以更一般地推广到网中,而“序列的极限”则与范畴论中的极限和有向极限的概念密切相关。对于序列(sequence) a n = 1 n {displaystyle a_{n}={tfrac {1}{n}}} 随着n的增大, a n {displaystyle a_{n}} 从0的右侧越来越接近0,于是可以认为0是这个序列的极限(虽然这个结论是正确的,但是它仍需要证明)。柯西(Cauchy)在19世纪给出了极限的严格定义: 设 { x n } , x n ∈ R , n = 1 , 2 , … , x 0 ∈ R {displaystyle {x_{n}},x_{n}in mathrm {R} ,n=1,2,ldots ,x_{0}in mathrm {R} } ,对于任意的正实数 ϵ {displaystyle epsilon } ,存在自然数 N {displaystyle {mathit {N}}} ,使得当 n > N {displaystyle {mathit {n>N}}} 时,有 | x n − x 0 | < ϵ {displaystyle |x_{n}-x_{0}|<epsilon } ,用符号来表示即 ∀ ϵ > 0 , ∃ N ∈ N , ∀ n > N , | x n − x 0 | < ϵ {displaystyle forall epsilon >0,exists Nin mathbb {N} ,forall n>N,|x_{n}-x_{0}|<epsilon }则称数列 { x n } {displaystyle {x_{n}}} 收敛于 x 0 {displaystyle x_{0}} ,记作 lim n → ∞ x n = x 0 {displaystyle lim _{nto infty }x_{n}=x_{0}} 。直观地说,这就说明序列的元素(element)随着n的增大越来越靠近 x 0 {displaystyle x_{0}} ,因为上面的绝对值也可以用来刻画距离。当然这并不是说每一项都比前一项更为靠近。而且更一般地说,不是所有的序列都有极限的。如果一个序列是有极限的,我们称这个数列收敛,否则称其为发散。可以证明,如果一个序列是收敛的,那么它有且仅有一个极限。序列的极限和函数(function)的极限之间的关系是相当密切的。一方面,序列的极限可以直接理解为一个定义在自然数集合上的函数趋于无穷时候的极限。另一方面,一个函数在 x {displaystyle x} 处的极限(如果存在),与序列 { x n ∣ x n = f ( x + 1 n ) } {displaystyle {x_{n}mid x_{n}=f(x+{tfrac {1}{n}})}} 的极限是相同的。假设 f ( x ) {displaystyle f(x)} 是一个实函数, C {displaystyle C} 是一个实数,那么表示 f ( x ) {displaystyle f(x)} 可以任意地靠近 L {displaystyle L} ,只要我们让 x {displaystyle x} 充分靠近 c {displaystyle c} 。此时,我们说当 x {displaystyle x} 趋向 c {displaystyle c} 时,函数 f ( x ) {displaystyle f(x)} 的极限是 L {displaystyle L} 。值得特别指出的是,这个定义在 f ( c ) ≠ L {displaystyle f(c)neq L} 的时候同样是成立的。事实上,即使 f ( x ) {displaystyle f(x)} 在 c {displaystyle c} 点没有定义,我们仍然可以定义上述的极限。以下两个例子或许对理解这个概念有所帮助:考虑函数 f ( x ) = x x 2 + 1 {displaystyle f(x)={frac {x}{x^{2}+1}}} 在 x {displaystyle x} 趋向 2 {displaystyle 2} 的时候的性质,此时 f ( x ) {displaystyle f(x)} 在 x = 2 {displaystyle x=2} 这点是有定义的,因为 f ( 2 ) = 0.4 {displaystyle f(2)=0.4} 。当 x {displaystyle x} 趋向 2 {displaystyle 2} 的时候,函数值趋向 0.4 {displaystyle 0.4} ,因此我们有极限 lim x → 2 f ( x ) = 0.4 {displaystyle lim _{xto 2}f(x)=0.4} 。在这种情况下,即函数在某一点的取值和当 x {displaystyle x} 趋向这一点的极限值相同的时候,我们称 f {displaystyle f} 在 x = c {displaystyle x=c} 这一点是连续的。当然,这是相当特殊的情况,考虑那么当 x {displaystyle x} 趋于 2 {displaystyle 2} 的时候, g ( x ) {displaystyle g(x)} 的极限与前面的 f ( x ) {displaystyle f(x)} 相同,都是 0.4 {displaystyle 0.4} 。但是请注意 g ( 2 ) ≠ 0.4 {displaystyle g(2)neq 0.4} ,这就是说, g ( x ) {displaystyle g(x)} 在 x = 2 {displaystyle x=2} 是不连续。或者考虑这样一个例子,使得 f ( x ) {displaystyle f(x)} 在 x = c {displaystyle x=c} 时没有定义:当 x {displaystyle x} = 1 {displaystyle 1} 时, f ( x ) {displaystyle f(x)} 是没有定义的,但极限存在,即 lim x → 1 f ( x ) = 2 {displaystyle lim _{xto 1}f(x)=2} :在 x ≠ 1 {displaystyle xneq 1} 的情况下, x {displaystyle x} 可以任意靠近 1 {displaystyle 1} ,从而 f ( x ) {displaystyle f(x)} 的极限为 2 {displaystyle 2} 。形式上讲,极限可以这样定义:命 f {displaystyle f} 是一个定义于包含 c {displaystyle c} 的开区间(或此开区间剔除 c {displaystyle c} )上的实值函数,命 L {displaystyle L} 是一个实数,那么表示对于任意的 ε   > 0 {displaystyle varepsilon >0} ,都存在一个对应的 δ   > 0 {displaystyle delta >0} 使得:当 x {displaystyle x} 满足 0 < | x − c | < δ   {displaystyle 0<|x-c|<delta } 时总有 | f ( x ) − L | < ε   {displaystyle |f(x)-L|<varepsilon } 成立。与函数趋于某个给定值时的极限概念相关的是函数在无穷远处的概念。这个概念不能从字面上直接理解为: x {displaystyle x} 距离无穷远越来越小的状态,因为无穷不是一个给定的数,也不能比较距离无穷的远近。因此,我们用 x {displaystyle x} 越来越大(如果讨论正无穷时)来替代。例如考虑 f ( x ) = 2 x x + 1 {displaystyle f(x)={frac {2x}{x+1}}} .当 x {displaystyle x} 非常大的时候, f ( x ) {displaystyle f(x)} 的值会趋于 2 {displaystyle 2} 。事实上, f ( x ) {displaystyle f(x)} 与 2 {displaystyle 2} 之间的距离可以变得任意小,只要我们选取一个足够大的 x {displaystyle x} 就可以了。此时,我们称 f ( x ) {displaystyle f(x)} 趋向于(正)无穷时的极限是 2 {displaystyle 2} 。可以写为形式上,我们可以这样定义:类似地,我们也可以定义:如果考虑将 f {displaystyle f} 的定义域推广到扩展的实数轴,那么函数在无穷远的极限也可以看作在给定点的极限的特例。以下规则只有当等号右边的极限存在并且不为无穷时才成立在引入网的概念下,上述的定义可以毫无障碍地推广到任何拓扑空间。事实上,现代数学中的极限概念就是定义在拓扑空间上的,上述的例子都是拓扑空间的具体化。极限的符号为lim,它出自拉丁文limit(界限)的前三个字母。在1786年出版的德国人浏伊连(S. L'Huilier)的书中,第一次使用这个符号。不过,“x趋于a”当时都记作“x=a”,直到20世纪人们才逐渐用“→”替代“=”。英国近代数学家哈代是第一个使用现代极限符号的人。

相关

  • 糖化终产物糖化终产物(英语:Advanced glycation end products)是糖与蛋白质相互聚合、经过一系列的反应后产生的不可还原之物质。它也会改变及影响蛋白质的正常功能,与其他蛋白质连成大分
  • 吗啡吗啡(Morphine)为一种阿片类(英语:opiate)止痛剂,会直接作用于中枢神经系统,改变人体对疼痛的感觉。可使用于急性或慢性的疼痛。吗啡也常用于心肌梗塞和临盆时,可以口服、肛门塞剂(英
  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 氧四环素土霉素 Oxytetracycline也称为“地霉素”或“氧四环素”,是第二个被发现的广谱抗菌的四环素类抗生素。土霉素是由Finlay等人在辉瑞实验室附近分离到的链霉菌Streptomyces rim
  • 嗅觉嗅觉是一种由感官感受的知觉。它由两感觉系统参与,即嗅神经系统和鼻三叉神经系统。嗅觉和味觉会整合和互相作用。嗅觉是一种远感,即是说它是通过长距离感受化学刺激的感觉。相
  • 鼠绦虫缩小膜壳绦虫(学名:Hymenolepis diminuta)是一种食源性(英语:Foodborne parasites)寄生虫, 属于绦虫纲圆叶目,可引致膜壳绦虫病(hymenolepiasis)。这种线虫以昆虫作中间宿主,最终会感
  • 食用色素食用色素(英语:colors, pigments),是食品添加剂的一种,又称着色剂,用于改善物品外观的可食用染料。常用于食物加工品、饮料、药物、口红与化妆品的染色上。由于各地的定义不同,有些
  • 石部,为汉字索引中的部首之一,康熙字典214个部首中的第一百一十二个(五划的则为第十八个)。就繁体和简体中文中,石部归于五划部首。石部通常从上、下、右方为部字。且无其他部首
  • 叶绿醌叶绿基甲萘醌(英语:Phylloquinone,2-甲基-3-叶绿基-1,4-萘醌,简称叶绿醌,又称为维生素K1)属于一种多环芳香酮,骨架基于2-甲基-1,4-萘醌,在三号位上有一个植烷取代基。叶绿基甲萘醌是
  • 木村资生木村资生(日语:木村 資生,1924年11月13日-1994年11月13日),日本生物学家。他因提出分子水平的中性演化理论和对理论群体遗传学的完善而闻名于科学界。他的《分子演化的中性理论》(T