量子比特

✍ dations ◷ 2025-07-30 01:55:20 #量子力学,量子信息

量子比特(又称为Q比特、qubit ),在量子信息学中是量子信息的计量单位。传统电脑使用的是0和1,量子电脑虽然也是使用0跟1,但不同的是,量子电脑的0与1可以同时计算。在古典系统中,一个比特在同一时间,只有0或1,不是0就是1,不是1就是0,只存在一种状态,但量子比特可以是1同时也可以是0,两种状态同时存在,这种效果叫量子叠加。这是量子电脑计算目前独有的特性。

具有量子特性的系统(通常为双态系统,如自旋1/2粒子),选定两个相互正交的本征态,分别以 | 0 {\displaystyle |0\rangle } (采狄拉克标记右括向量表示)和 | 1 {\displaystyle |1\rangle } 代表。当对此系统做投影式量子测量时,会得到的结果必为这两个本征态之一,以特定几率比例出现。此外,这两个本征态可以复数系数做线性叠加得到诸多新的量子态

而从量子力学得知,这些线性叠加态 | ψ {\displaystyle |\psi \rangle \,} 的两个复数系数,必须要求各自绝对值平方相加之和为1,也就是:

因为

两个本征态 | 0 {\displaystyle |0\rangle } | 1 {\displaystyle |1\rangle } 及无限多种线性叠加态 | ψ = α | 0 + β | 1 {\displaystyle |\psi \rangle =\alpha |0\rangle +\beta |1\rangle } ,集合起来就代表了一个量子比特;各态皆属纯态。

和(古典)比特“非0即1”有所不同,量子比特可以“又0又1”的状态存在,所谓“又0又1”即上述无限多种 ( α , β ) {\displaystyle (\alpha ,\beta )\,} 组合的线性叠加态。这特性导致了量子平行处理等现象,并使量子计算应用在某些课题上显著地优于古典计算,甚至可进行古典计算无法做到的工作。

量子比特通常会采用一种几何表示法将之图像化,此表示法称之为布洛赫球面。

若设置 | 0 {\displaystyle |0\rangle } | 1 {\displaystyle |1\rangle } 顺沿直角坐标系的z方向,则有诸多表示法。可采上述向量形式如狄拉克标记的右括向量,亦可将之表为行矩阵;另外有密度矩阵形式,可表为右括向量乘以左括向量,或表为方块矩阵,可见如下:

量子三元(qutrit)是量子比特的推广,有些应用采取之。量子三元以狄拉克标记右括向量表示可写为 | 0 {\displaystyle |0\rangle } | 1 {\displaystyle |1\rangle } | 2 {\displaystyle |2\rangle } 。一个自旋为1的粒子,其自旋自由度有三,所对应的本征值为+1, 0, -1,此粒子即可用作量子三元。

相关

  • 大肠激躁症大肠激躁症(英语:Irritable bowel syndrome),又称为大肠躁郁症、肠躁症、躁性大肠征候群、肠易激综合征,主要为没有任何肠胃道疾病损伤下出现腹痛及排便型态改变的症状。这些症状
  • 罗马城罗马(意大利语:Roma)是意大利首都及全国政治、经济、文化和交通中心,是世界著名的历史文化名城,古罗马文明的发祥地,因建城历史悠久并保存大量古迹而被昵称为“永恒之城”。其位于
  • 意大利共和党意大利共和党(Partito Repubblicano Italiano,简称PRI)意大利中间偏左自由主义政党。1895年成立。该党于1946年至1994年长期与是意大利天主教民主党合作,反对意大利共产党,并主张
  • 印度支那半岛中南半岛(法语:Indochine,英语:Indochina 或Indo-China),又译印度支那半岛,指亚洲东南部东临南海,西濒印度洋的半岛,因位于中国以南、印度以东而得名。中南半岛包括今日的缅甸、泰国
  • 珊瑚海群岛珊瑚海群岛(英语:Coral Sea Islands)是澳大利亚的海外领地,位于昆士兰州东北方的珊瑚海中的,总面积有5平方公里,无人口居住。1印度尼西亚的部分地区和东帝汶有时被视为大洋洲。 2
  • 台中医院卫生福利部台中医院(简称台中医院)是一所位于台湾台中市的卫生福利部所属医院。创设于1895年,前身为日治时期“台湾总督府台中病院”。是台湾中部唯一的结核病专属医院。坐标:24
  • 两栖类动物两栖动物(学名:Amphibia)是两栖纲生物的通称,又名两生动物,包括所有生没有卵壳的卵,拥有四肢的脊椎动物(蚓螈的四肢已退化)。两栖动物的皮肤裸露,表面没有鳞片、毛发等覆盖,但是可以分
  • 陈大光陈大光(越南语:Trần Đại Quang,1956年10月12日-2018年9月21日),曾是越南共产党主要领导人之一,第十届至十二届中央委员,第十一届、十二届中央政治局委员,党内地位在时任总书记阮富
  • 水色水色(英语:aqua),为青色的一种,介于蓝色与青色之间,在色谱上较偏向浅蓝色,也被称为“水蓝色”。代表清彻明澄的水的颜色,作为江、湖、溪等自然水的象征,但与代表海洋的深蓝色有所不同
  • 正祖朝鲜正祖(朝鲜语:조선 정조/朝鮮 正祖 Joseon Jeongjo;1752年10月28日(农历9月22日)-1800年8月18日(农历6月28日)),名讳李祘(朝鲜语:이산/李祘 Yi San),朝鲜王朝的第22代君主,1776年至1800