闭流形

✍ dations ◷ 2025-11-24 12:40:13 #闭流形

数学上,闭流形是指无边界的紧致流形。如讨论背景中的流形不可能有边界,那么紧致流形都是闭流形。留意闭流形中的“闭”是指封闭,不是拓扑学概念的闭集。

闭流形从直观意义来说是“有限”的。按照紧致性的基本性质,一个闭流形是有限个连通闭流形的不交并。几何拓扑学的根本目标之一,是了解可能出现的闭流形。

闭流形的最简单例子是圆形,这是一维的闭流形。二维闭流形(闭曲面)的简单例子有环面和克莱因瓶。一个非例子是直线,虽然是无边界流形,但不是紧致。另一个非例子是闭圆盘,虽然是紧致流形,但有边界。

任何闭拓扑流形,都可以嵌入到某R中。这结果可以从更一般的惠特尼嵌入定理得出。

相关

  • 肺栓塞肺栓塞(英语:Pulmonary embolism,简称 PE),系描述肺动脉遭到来自其他地方的物质,经过血液循环而阻塞肺动脉的病况。肺栓塞的症状有呼吸困难、吸气时胸痛,以及咳血等等,也可能会出现
  • 递归可枚举集合递归可枚举集合(英语:Recursively enumerable set)是可计算性理论或更狭义的递归论中的一个概念。可数集合S被称为是递归可枚举、计算可枚举的、半可判定的或可证明的,如果或者
  • 纺织业纺织业主要关注的是纱线、布匹、服装的设计与制造。纺织工业所采用的原始材料既可以是天然材料(棉花、蚕丝等),也可以是化学工业中合成的材料。
  • 1154年重要事件及趋势重要人物
  • 江南都市报《江南都市报》是一份由中国江西的江西日报社主办的综合性日报,于1994年4月1日创刊,前身是《赣江大众报》。1997年8月1日改名为《江南都市报》。《江南都市报》以“关注都市冷
  • 越南国会主席 政治主题越南国会主席(越南语:Chủ tịch Quốc hội Việt Nam/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN
  • 海伦·B·华纳天文学奖海伦·B·华纳天文学奖(英语:Helen B. Warner Prize for Astronomy)由美国天文学会设立,每年颁发一次, 旨在奖励对观测或理论天文学做出重要贡献的年轻天文学家(年龄不到36岁,或获
  • 介电陶瓷介电陶瓷,主要是利用陶瓷的介电性能,也就是由材料中电荷短程分布所引起的性能。当材料的晶格为分对称的时候,应力可以导致电荷的不对称分布,这种材料就叫做压电材料。当材料的不
  • 庄静固伦公主庄静固伦公主(1784年10月20日-1811年6月27日),嘉庆帝第四女,生母为孝淑睿皇后喜塔腊氏。乾隆四十九年(1784年)九月初七日出生。父亲颙琰尚为皇子,生母喜塔腊氏是他的嫡福晋。嘉庆元
  • 托马斯·肯皮斯托马斯·肯皮斯 CRSA (Thomas à Kempis,1380年-1471年7月25日),或译托马斯·肯培、托马斯·厄·肯培,文艺复兴时期欧洲宗教作家。他积极提倡灵修,曾参加新灵修运动。他的一生主要