数学上,微分几何中的常曲率是一个通常用于曲面的概念。对于那些曲面,标量曲率是决定局部几何特点的唯一数字,而它为常数显然表示曲面在所有点有相同几何结构。圆也称为具有常曲率,而且,以一种自然(但不同)的意义上是常曲率,因为一维流形内在曲率总是0,因而只有嵌入曲率。
有常曲率的标准曲面是有正曲率的椭圆几何(或者球面几何),有0曲率的欧氏几何,和有负曲率的双曲几何(伪球面几何)。因为黎曼曲面可以变为常曲率,因此对于负曲率存在大量其他的例子。
对于高维流形,常曲率通常意味着常截面曲率。和曲面情形相同,存在三类几何(椭圆,平直,或者双曲),其曲率分别为正,0,或者负。
: 黎曼流形曲率