饼图

✍ dations ◷ 2025-07-01 11:00:11 #饼图
饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系。在饼图中,每个扇区的弧长(以及圆心角和面积)大小为其所表示的数量的比例。这些扇区合在一起刚好是一个完全的圆形。顾名思义,这些扇区拼成了一个切开的饼形图案。饼图在商业领域和大众媒体中几乎无处不在,但很少用于科技出版物。这是受到批评最多的图表之一,而很多统计学家建议避免使用这一图表。它们指出,在饼图中很难对不同的扇区大小进行比较,或对不同饼图之间数据进行比较。在一些特定情况下,饼图可以很有效地对信息进行展示。特别是在想要表示某个大扇区在整体中所占比例,而不是对不同扇区进行比较时,这一方法十分有效。饼图在扇区所占比例达到总体的25%或50%时,可以很好地达到展示的目的。但通常,可能更多情况会采用其它图表如条形图或圆点图(英语:dot plot (statistics)),或非图表的方法如表格来表达信息。通常认为,已知最早的饼图是威廉·普莱菲(英语:William Playfair)于1801年在他的《统计学摘要》Statistical Breviary中所作。以下数据基于2004年欧洲议会选举(英语:European Parliament election, 2004)的初步结果。以下表格中列出了分配给各个党派的席位数量,并计算出了他们各自所占的百分比。最后一列的数值为每个扇区的圆心角,由360°乘以百分比得到。*由于进行取整,合计没有达到100和360。每个圆心角的大小都与其所对应的数量成一定比例,在这个例子里就是席位。由于圆心角的合计需要等于360°,所以一个数量的圆心角就是其在360度中所占的大小。举个例子,最大团体(EPP)的圆心角为135.7°。因为360乘以0.377并保留一位小数,等于135.7。统计学家认为将饼图用于表达信息的效果很差。虽然饼图在商业领域和杂志中的使用很广泛,科学文献中却很少用到饼图。原因就是饼图用面积取代了长度,这样就加大了对各个数据进行比较的难度。根据史蒂文斯幂函数定律(英语:Stevens' power law),面积只能提供0.7的感知力,而长度的感知力有1.0。由于感知力的差异与实际差异呈线性相关,长度更适宜用于量度。根据AT&T贝尔实验室的研究,使用角度来进行比较没有使用长度精确。右图给出了相同数据绘制的三个饼图,而下文则是对应的条形图。在饼图中很难根据大小对比较对象进行排序,但条形图却很容易做到这一点。同样,用条形图更容易进行数据集之间的比较。但是,如果目的是在单一图表中对一个对象(饼图中的扇区)和整体(整个饼图)之间的关系进行比较,且比例接近25%的倍数(如25%或50%),饼图效果比条形图好。饼图中的一个或几个扇区从图表中分离开来的形式。这种图表用于强调某个扇区,或强调图表中其它占更小比例的扇区。这种饼图样式用于表现一种三维外观的图表。使用这种图表通常是出于美观的目的,使用三维外观并不能改善图表中数据的读取。相反,由于使用了三维透视的扭曲效果,这种图表更难对数据进行分析。通常并不鼓励使用多余的维数来美化图表,这个规律并不只对饼图有效。弗罗伦斯·南丁格尔于1858年首次使用了一种现在称为极区图的图表类型,有时也称为南丁格尔玫瑰图。这种图表有时会被错误地称为“鸡冠花”("coxcomb"),但这个名称是南丁格尔用于称呼使用这一图表的书,而不是图表本身。极区图和通常使用的饼图很类似,扇区的角度和饼图一样但扇区离圆心的距离并不相同。据说南丁格尔早期大部分声望都来自其对数据清楚且准确的表达。虽然通常认为南丁格尔发明了这一图表,但更早之前也有人使用。利昂·拉兰内(法语:Léon Lalanne)于1843年使用极区图来表示罗经点附近风向的频率。而André-Michel Guerry(英语:André-Michel Guerry)是更早的"玫瑰图"形式发明者,他于1829年的论文就采用它来表示循环现象发生的频率。通常认为,已知最早的饼图是威廉·普莱菲(英语:William Playfair)于1801年在他的《统计学摘要》Statistical Breviary中所作。书中一共列了两张这种图表。这一发明最初并没有得到广泛应用。查尔斯·约瑟夫·米纳尔德(英语:Charles Joseph Minard)于1858年成为第一个使用这一图表的人,特别是在地图中增加了相关的三维信息。威廉·普莱菲在《统计学摘要》中使用的一张饼图,描述了1789年以前土耳其帝国在亚洲、欧洲及非洲中所占的比例。米纳尔德使用饼图所做的地图,用于所示从法国周边运到巴黎消费的牛数量(1858)。根据英国电视节目QI(英语:QI)描述,弗罗伦斯·南丁格尔也曾大量使用饼图来表示百分比。

相关

  • 达达尼尔海峡坐标:40°13′00″N 26°26′00″E / 40.216667°N 26.433333°E / 40.216667; 26.433333达达尼尔海峡(希腊语:Δαρδανέλλια,转写:Dardanéllia),土耳其称恰纳卡莱海峡(土
  • 数码印刷数码印刷是指从数字的图像直接印刷成各种媒体的方法。它通常指的是包括以桌面出版进行短版印刷的专业印刷和其他数字源使用大幅面以及高产量的激光或喷墨打印机打印。数字印
  • 布宜诺斯艾利斯大学布宜诺斯艾利斯大学(西班牙语:Universidad de Buenos Aires,UBA)是阿根廷最大的大学,创立于1821年8月12日。它由13个院系、六家医院、10个博物馆和3所中学组成。下列学院组成的大
  • 区室细胞区室(英语:cellular compartment,亦称为细胞腔隙)是细胞生物学中使用的名词,包括所有真核细胞的细胞质中封闭的部分,它们多被单层或双层的磷脂所包围。绝大多数的细胞器均被视
  • 斯特鲁普效应红色 绿色 蓝色绿色 蓝色 橘色绿色 红色 橘色蓝色 红色 绿色老鼠 企鹅 猴子老鼠 企鹅 猴子如果文字的意义与显示的字体颜色没有相关,说出显示文字的颜色的名称比较容易且迅速
  • 碰触碰触 (Dotyk) 是波兰歌手Edyta Górniak的首张专辑,于1995年5月8日由波兰百代唱片公司发行。该专辑在波兰专辑榜获得数周冠军,仅三日突破黄金,二个月获得白金。迄今为止,已被认
  • 埃芬汉县埃芬汉县(Effingham County, Georgia)是美国乔治亚州东部的一个县,东邻南卡罗莱纳州。面积1,250平方公里。根据美国2000年人口普查,共有人口37,535人。县治春田市 (Springfield)
  • 巴尔的摩分类法巴尔的摩病毒分类系统(Baltimore classification)是一种由戴维·巴尔的摩建立的以基因组和病毒转录mRNA方式为区分的病毒分类系统。世界上的病毒千奇百怪,数量极多,生活周期又各
  • 智商智能商数(德语:Intelligenzquotient),简称智商(德语:IQ),是用智力测试测量人在其年龄段的认知能力(“智力”)的得分。人的智商呈正态分布,目前主要的智力测验(包含最常被使用的“韦克斯
  • 健力健力(英语:Powerlifting),是一种借助举起杠铃来锻炼肌肉的运动,分成深蹲、卧推、硬拉三个项目。它虽然发源自举重,但与奥林匹克举重分别为两种竞技项目,健力举起杠铃(Barbell)的动作