饼图

✍ dations ◷ 2025-04-26 12:01:17 #饼图
饼图,或称饼状图,是一个划分为几个扇形的圆形统计图表,用于描述量、频率或百分比之间的相对关系。在饼图中,每个扇区的弧长(以及圆心角和面积)大小为其所表示的数量的比例。这些扇区合在一起刚好是一个完全的圆形。顾名思义,这些扇区拼成了一个切开的饼形图案。饼图在商业领域和大众媒体中几乎无处不在,但很少用于科技出版物。这是受到批评最多的图表之一,而很多统计学家建议避免使用这一图表。它们指出,在饼图中很难对不同的扇区大小进行比较,或对不同饼图之间数据进行比较。在一些特定情况下,饼图可以很有效地对信息进行展示。特别是在想要表示某个大扇区在整体中所占比例,而不是对不同扇区进行比较时,这一方法十分有效。饼图在扇区所占比例达到总体的25%或50%时,可以很好地达到展示的目的。但通常,可能更多情况会采用其它图表如条形图或圆点图(英语:dot plot (statistics)),或非图表的方法如表格来表达信息。通常认为,已知最早的饼图是威廉·普莱菲(英语:William Playfair)于1801年在他的《统计学摘要》Statistical Breviary中所作。以下数据基于2004年欧洲议会选举(英语:European Parliament election, 2004)的初步结果。以下表格中列出了分配给各个党派的席位数量,并计算出了他们各自所占的百分比。最后一列的数值为每个扇区的圆心角,由360°乘以百分比得到。*由于进行取整,合计没有达到100和360。每个圆心角的大小都与其所对应的数量成一定比例,在这个例子里就是席位。由于圆心角的合计需要等于360°,所以一个数量的圆心角就是其在360度中所占的大小。举个例子,最大团体(EPP)的圆心角为135.7°。因为360乘以0.377并保留一位小数,等于135.7。统计学家认为将饼图用于表达信息的效果很差。虽然饼图在商业领域和杂志中的使用很广泛,科学文献中却很少用到饼图。原因就是饼图用面积取代了长度,这样就加大了对各个数据进行比较的难度。根据史蒂文斯幂函数定律(英语:Stevens' power law),面积只能提供0.7的感知力,而长度的感知力有1.0。由于感知力的差异与实际差异呈线性相关,长度更适宜用于量度。根据AT&T贝尔实验室的研究,使用角度来进行比较没有使用长度精确。右图给出了相同数据绘制的三个饼图,而下文则是对应的条形图。在饼图中很难根据大小对比较对象进行排序,但条形图却很容易做到这一点。同样,用条形图更容易进行数据集之间的比较。但是,如果目的是在单一图表中对一个对象(饼图中的扇区)和整体(整个饼图)之间的关系进行比较,且比例接近25%的倍数(如25%或50%),饼图效果比条形图好。饼图中的一个或几个扇区从图表中分离开来的形式。这种图表用于强调某个扇区,或强调图表中其它占更小比例的扇区。这种饼图样式用于表现一种三维外观的图表。使用这种图表通常是出于美观的目的,使用三维外观并不能改善图表中数据的读取。相反,由于使用了三维透视的扭曲效果,这种图表更难对数据进行分析。通常并不鼓励使用多余的维数来美化图表,这个规律并不只对饼图有效。弗罗伦斯·南丁格尔于1858年首次使用了一种现在称为极区图的图表类型,有时也称为南丁格尔玫瑰图。这种图表有时会被错误地称为“鸡冠花”("coxcomb"),但这个名称是南丁格尔用于称呼使用这一图表的书,而不是图表本身。极区图和通常使用的饼图很类似,扇区的角度和饼图一样但扇区离圆心的距离并不相同。据说南丁格尔早期大部分声望都来自其对数据清楚且准确的表达。虽然通常认为南丁格尔发明了这一图表,但更早之前也有人使用。利昂·拉兰内(法语:Léon Lalanne)于1843年使用极区图来表示罗经点附近风向的频率。而André-Michel Guerry(英语:André-Michel Guerry)是更早的"玫瑰图"形式发明者,他于1829年的论文就采用它来表示循环现象发生的频率。通常认为,已知最早的饼图是威廉·普莱菲(英语:William Playfair)于1801年在他的《统计学摘要》Statistical Breviary中所作。书中一共列了两张这种图表。这一发明最初并没有得到广泛应用。查尔斯·约瑟夫·米纳尔德(英语:Charles Joseph Minard)于1858年成为第一个使用这一图表的人,特别是在地图中增加了相关的三维信息。威廉·普莱菲在《统计学摘要》中使用的一张饼图,描述了1789年以前土耳其帝国在亚洲、欧洲及非洲中所占的比例。米纳尔德使用饼图所做的地图,用于所示从法国周边运到巴黎消费的牛数量(1858)。根据英国电视节目QI(英语:QI)描述,弗罗伦斯·南丁格尔也曾大量使用饼图来表示百分比。

相关

  • 哈萨克斯坦哈萨克斯坦国家图书馆(哈萨克语:Национальная Библиотека Республики Казахстан),是哈萨克斯坦的国家图书馆。这座图书馆于1931年建
  • 类人猿人格类人猿人格权运动是一项旨在向人科的非人类成员(倭黑猩猩、黑猩猩、大猩猩、红毛猩猩)提供在法律上“人”的地位,并基于此对这些动物进行合法保护的运动。支持者包括灵长类动物
  • 卷曲螺旋卷曲螺旋(英语:coiled coil)是一种蛋白质超二级结构,由2-7个α螺旋(最常见的是2或4个)互相缠绕形成麻花状结构。许多具有重要生物学功能(如基因表达调控中的转录因子)蛋白质含有卷曲
  • 果园果园通常是生长乔木或灌木,收获水果以及坚果的人工农业用地。实际上果园很接近于种植水果的花园,如果按照某种分布模式在花园中种植果树,除了收获水果、坚果之外还可以获得美学
  • 托斯坦·威泽尔托斯坦·尼尔斯·威泽尔(瑞典语:Torsten Nils Wiesel,1924年6月3日-),瑞典神经科学家,与大卫·休伯尔(David H. Hubel)由于对视觉系统的讯息处理过程之研究,而和研究左右脑半球的罗杰
  • Fesub3/sub(POsub4/sub)sub2/sub磷酸亚铁是磷酸的铁盐,化学式Fe3(PO4)2。可用于花园里消灭苔藓和蛞蝓。蓝灰色单斜晶体,空间群P 21/c,其中a = 0.881 nm,b = 1.1169 nm,c = 0.6145 nm,β = 99.6°,Z = 4。可形成水
  • 福菜福菜或称为覆菜,是加盐腌渍过的酸菜,经由阴干日晒的加工,在水分尚未完全干燥时,塞入玻璃瓶(台湾农家常使用台湾烟酒公司的米酒玻璃瓶),或装入大型菜瓮中。密封后等待酸菜自然发酵,约
  • 阿森斯雅典 (英语:Athens),又译阿森斯,正式名称为雅典-克拉克县(Athens–Clarke County),为佐治亚州东北部的合并市县。成立于1806年,市名来自古希腊学术中心雅典。原为雅典-克拉克县县治,19
  • 任露泉任露泉(1944年1月-),中国仿生科学与工程学家。吉林大学教授。生于江苏铜山,原籍江苏铜山。1967年毕业于吉林大学,1981年在吉林工业大学获工学硕士学位。现任吉林大学学术委员会副
  • 泛酸钙泛酸(Pantothenic acid)也称作维生素B5,耐热,能升华,是水溶性维生素。它是人体必需的维生素之一,动物需要泛酸以合成辅酶A,而辅酶A是动物代谢糖类、蛋白质、脂肪的必要物质。其共轭