对偶 (数学)

✍ dations ◷ 2025-04-02 08:34:50 #对偶理论

在数学领域中,对偶一般来说是以一对一的方式,常常(但并不总是)通过某个对合算子,把一种概念、公理或数学结构转化为另一种概念、公理或数学结构:如果的对偶是,那么的对偶是。由于对合有时候会存在不动点,因此的对偶有时候会是自身。比如射影几何中的笛沙格定理,即是在这一意义下的自对偶。

在数学背景当中具有很多种意义,而且,尽管它是“现代数学中极为普遍且重要的概念(a very pervasive and important concept in (modern) mathematics)”并且是“在数学几乎每一个分支中都会出现的重要的一般性主题(an important general theme that has manifestations in almost every area of mathematics)”,但仍然没有一个能把对偶的所有概念统一起来的普适定义。

在两类对象之间的对偶很多都和配对(pairing),也就是把一类对象和另一类对象映射到某一族标量上的双线性函数相对应。例如,线性代数的对偶对应着把线性空间中的向量对双线性映射到标量上,广义函数及其相关的试验函数也对应着一个配对且在该配对中可用试验函数来对广义函数进行积分,庞加莱对偶从给定流形的子流形之间的配对的角度看同样也对应着交数。

一种特别简单的对偶形式来自于序理论。偏序关系 = (, ≤)的对偶是由同一偏序集组成但关系相反的偏序关系。我们比较熟悉的对偶偏序的例子有:

为某一偏序定义的概念会对应到对偶偏序集的上。例如,的极小元对应于的极大元:极小和极大是序理论中的对偶概念。序理论中的其他对偶概念还包括上界和下界、上闭集合和下闭集合、理想和滤子。

一种特殊的序逆对偶存在于某个集合的幂集合中:若 A ¯ = S A {\displaystyle {\bar {A}}=S\setminus A} 到的arrow当且仅当偏序中有 ≤ 。偏序的序逆对偶可扩展为对偶范畴的概念,即由给定范畴中所有arrow的逆所组成的范畴。后面将要描述的很多具体的对偶都是在此意义下的范畴的对偶。

存在着很多种不同但互相联系的在同一类几何或拓扑对象之间的对偶,不过具有对偶关系的对象在特征维数上是相反的。这方面的经典例子是正多面体的对偶,其中立方体和正八面体形成了一个对偶配对,正十二面体和正二十面体形成了另一个对偶配对,而正四面体是自对偶的。任何一种这类多面体的对偶多面体可作为主要多面体每一面中心点的凸包。

相关

  • 中心静脉压中心静脉压(CVP)(英语:central venous pressure)指的是右心房和胸腔内大静脉的血压。正常值为4~12cmH2O。中心静脉压的大小取决于心脏射血能力和静脉回心血量之间的相互关系。若
  • 电子邮箱电子邮件(英语:electronic mail),简称电邮(email、e-mail),是指一种由一寄件人将数字信息发送给一个人或多个人的信息交换方式,一般会通过互联网或其他电脑网络进行书写、发送和接收
  • 锯鳐锯鳐科是锯鳐目的唯一一科,鱼的吻部延长,成为一个扁平的吻突,两侧有齿状突起,非常像锯鲨目的鲨鱼,但不同的地方是锯鳐身体扁平,鳃孔腹位(在身体的下方),锯吻上没有肉质触须。锯鳐有的
  • 中央商务区悉尼中心商务区(英语:Sydney central business district,(CBD))是澳大利亚新南威尔士州首府悉尼的商业中心。悉尼中心商务区在很大程度上与悉尼的市中心悉尼城区(Sydney City)吻合,因
  • 前秦前秦(350年—394年)是十六国之一。350年氐族人苻洪占据关中,称三秦王。352年苻健称帝,定都长安,国号“秦”。370年起,先后灭前燕、前凉及代国,统一北方。394年被西秦和后秦所灭。当
  • 扇蟹总科扇蟹总科(学名Xanthoidea),是短尾次目(螃蟹)的其中一个总科。扇蟹总科过往曾经有过11个科,分为130个属及超过一千个不同的品种。 根据2009年的分类,现时除了扇蟹科、Panopeidae及
  • 汀州客语本文属于客家系列的一部分汀州客语,或称客家语汀州片,是客家语的一个支系,主要分布在中国福建省西部的古汀州府区域。对于客家语的划分一般有两个版本,新的分片则加入不少福建客
  • 埃姆斯实验室埃姆斯实验室(英语:Ames Laboratory),美国能源部下属的国家实验室,位于艾奥瓦州的埃姆斯,附属于爱荷华州立大学。实验室致力于新材料的设计、合成与制备;材料的表征;计算化学;凝聚体
  • 大阪府第1区大阪府第1区是日本众议院的选区,始于1994年。北海道 13 | 山形县 4 | 静冈县 9 | 岛根县 3 | 大分县 4福井县 3 | 山梨县 3 | 德岛县 3 | 高知县 3 | 佐贺县 3青森县 4 | 岩
  • 荷兰下萨克森语荷兰下萨克森语(荷兰语:Nederlands Nedersaksisch;荷兰下萨克森语:Nederlaands Leegsaksies)是荷兰东北部地区的西低地德语的方言集合。荷兰下萨克森语包括了多种方言,如格罗宁根