晶体学限制定理

✍ dations ◷ 2025-04-02 08:32:42 #晶体学,群论,代数定理

晶体学限制定理的基本形式是基于对晶体的旋转对称性通常被限制为2重,3重,4重,6重的观察后得出的。然而,准晶体中可能存在着其他种类的衍射对称性,例如5重对称;这种晶体是由丹·谢赫特曼于1982年发现的,他也凭此获得了2011年诺贝尔化学奖。

晶体模型是由离散的晶格通过一系列独立有限的平移建立的。因为离散性要求格点间的间距有一个下限值,所以该晶格对于空间中任意一点的旋转对称群必须是有限群。这个理论的重点在于,并不是所有的有限群都能兼容一个离散的晶格;在任何一个维度上,可兼容群的数量都是有限的。

二维(平面群(英语:wallpaper group))和三维(空间群)的特殊情况在实际应用中最为常用,在这里我们把他们放在一起分析。

2维或3维中的旋转的对称性需要将一个格点移动到同一平面的另一个格点的接续(succession),产生一个包含共面格点的正多边形。这里,我们把注意力集中到对称的作用平面上,借助右图中的晶格矢量来说明。

现在我们来考虑一个8重旋转,及其多边形相邻点之间的位移矢量。若任意两个阵点间存在位移,则相同的位移会在晶格中反复到处出现。将所有边上的位移矢量集结起来,并使它们都选取同一个格点作为起点。边矢量就变成了径向矢量,且他们的8重对称意味着集合点周围的格点是一个正八边形。但这是不可能的,因为新八边形的大小大约只是原来的80%。这种缩小论证的重点在于,这样的操作是没有限制的。我们可以对新的八边形重复同样的构造,多次重复直到格点间的距离小到任意我们想要的值;因此,没有任何离散的晶格可以具有8重对称。同样的论点适用于任何(k > 6)重旋转。

这个“缩小”的论证方式也排除了5重对称的可能性。考虑一个正五边形晶格点阵。如果这种点阵存在,那么我们可以每隔一个地选取边位移矢量,并(头到尾)地组装一个五角星,且使最后的边位移矢量指向起点。这个五角星的顶点正对应着原来的正五边形,但面积要比原来的小大约60%。

准晶和彭罗斯密铺(英语:Penrose tiling)的存在表明线性平移的假设是必要的。 彭罗斯密铺可以有五重的旋转对称性且是离散的,同时在此密铺中,任何局部邻域都重复出现无穷多次。然而,作为一个整体,此密铺没有线性平移性。即便没有晶格离散的假设,上述构造中不但没有矛盾,而且还会产生一个(非离散)的反例。因此在缺失任意一个上述假设的情况下,5重旋转对称的可能性是无法被排除的。全平面(无限平面)上的彭罗斯密铺对于单独一点只能有确定的(关于整个密铺的)5重旋转对称,而4重和6重对称晶格则具有无穷多的旋转对称中心。

考虑晶格中的两个格点A和B,由平移矢量 分隔。取角α,使得对于任意格点作α度旋转为此晶格的一个对称操作。若关于点B旋转α度,点A将会被映射到一个新的点A'。同样,若关于点A旋转α度,点B将会被映射到一个新的点B'。由于以上两个旋转均为对称操作,A'和B'必须同时为格点。由于晶格的周期性,连结A'和B'的新矢量 必须等于 乘上一个整数:

其中, m {\displaystyle m} 同时又可以通过下式给出:

联立两式可得:

其中 M = m + 1 {\displaystyle M=m+1} ,其中 = 1,2,3,4,6——这分别对应着1,2,3,4,以及6重对称;5重或大于6重的对称因此被排除了。

考虑共线的一行原子,相互间隔为。将整行原子(蓝色)关于点 旋转θ = +2π/ 得到黄色原子链;旋转θ = −2π/ 得到绿色原子链,如图所示。由于晶格周期性(平移对称性)的假设,同一行的黄色原子与绿色原子的间距必须为 = ,其中为整数。而通过几何推导,我们知道这些点之间的间距为:

联立上述两式,我们可以得到

于是,只有 = 1,2,3,4,6满足条件。

另一种证明方式是考虑变换矩阵的性质。矩阵中对角线上元素的和被称作矩阵的迹。在二维和三维下,所有的旋转操作都是面旋转,所以旋转矩阵的迹是一个只和角度相关的函数。对于二维平面上的旋转,迹等于2 cos θ;对于三维空间的旋转,迹等于1 + 2 cos θ.

例子

对于一个晶格的基底,我们只能保证它们相互的独立性;其正交性,以及它们是否为单位矢量是无法确定的。然而,对于“任意”基底,它们的迹是相同的(迹的相似不变性(英语:similarity invariance))。在晶格中,由于旋转变换必须将一个格点映射到另一个格点,每一个矩阵元必为整数——所以矩阵的迹也必须是整数。因此,壁纸和晶体中无法具有像上述例子提到的8重这样的旋转对称性(8重旋转矩阵的迹不是一个整数)。可能的旋转只有60°,90°,120°和180°的倍数,分别对应6,4,3和2重旋转。

例子

这种晶体学上对旋转操作普遍的限制是不保证一种旋转总可以与一种特定的晶格相容的。例如,60°旋转操作在正方形晶格中就行不通;90°旋转在长方形晶格中也是同理。


相关

  • 杯子杯是种大多数情况下用来盛载液体的器皿,通常用玻璃、瓷或不锈钢制造,在餐厅打包饮料,则常用纸杯或胶杯盛载。杯多呈圆柱形,上面开口,中空,以供盛物。因杯开口,杯内液体易被四周尘埃
  • 以物易物以物易物(英语:barter economy)又称物物交换,是有社会契约或明确协议条件下的交换价值模式。与礼物经济自由价值模式相反。用自己拥有的物品或服务与别人交换,以换取别人的物品或
  • 马尔库斯·奥勒里乌斯马可·奥勒留(拉丁语:Marcus Aurelius,121年4月26日-180年3月17日),全名为马可·奥勒留·安敦宁·奥古斯都(拉丁语:Marcus Aurelius Antoninus Augustus)。是罗马帝国五贤帝时代最后
  • 乙碲醇乙碲醇(分子式:CH3CH2TeH),是一种碲醇类的有机化合物,常见碲醇之一,结构上由乙醇中的氧原子被碲替代得到。常温下为黄色澄清油状液体,不溶于水,以具有高度刺激性腐臭气味。乙碲醇,和
  • 单源群单系群(英文:Monophyletic group,也称为单系类群)在支序分类中指的是一个分类单元(Taxon),其中的所有物种,只有一个共同的祖先,而且它们就是该祖先的所有后代。单系群也可以被这样定
  • Terminologia Histologica()是一份细胞生物学和组织学的受控词表,由FCAT(Federative International Committee on Anatomical Terminology(英语:Federative International Committee on Anatomical Termino
  • 北美黄连碱北美黄连碱(Hydrastine)是一种生物碱,分子式C21H21N1O6,1851年由Alfred P. Durand发现。其水解得白毛莨分碱(英语:hydrastinine)的反应在1910年代曾为拜耳公司合成止血药的一项专利
  • 中村知惠中村知惠(日语:中村知恵,1990年11月30日-),神奈川县出身的日本AV女优。隶属于Fitch事务所。2015年在Fitch出道。
  • 丹·费根丹·费根(英语:Dan Fegan,1962年-2018年2月25日),美国体育经纪人,现NBA职业经纪人排名第6位。他毕业于耶鲁大学法学院,在洛杉矶建立了一间律师事务所,并且在佩波戴恩大学法学院教授体
  • 乌克善乌克善或译吴克善、武克善(?-1665年),博尔济吉特氏,科尔沁部贝勒宰桑之子。清皇太极的正宫孝端文皇后的侄子。敏惠恭和元妃、孝庄文皇后的哥哥。顺治帝的舅舅兼岳父。天命十年(1625