费马原理

✍ dations ◷ 2025-04-04 11:07:34 #费马原理
费马原理(Fermat principle)最早由法国科学家皮埃尔·德·费马在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。 最初提出时,又名“最短时间原理”:光线传播的路径是需时最少的路径。费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。费马原理是几何光学的基本定理。用微分或变分法可以从费马原理导出以下三个几何光学定律:最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光线传播时间都相等。费马原理更正确的版本应是“平稳时间原理”。对于某些状况,光线传播的路径所需的时间可能不是最小值,而是最大值,或甚至是拐值。光从P点出发射向x点,反射到Q点。P 点到 x点的距离 d 1 = x 2 + a 2 {displaystyle d1={sqrt {x^{2}+a^{2}}}}Q 点 到 x 点的距离 d 2 = b 2 + ( l − x ) 2 {displaystyle d2={sqrt {b^{2}+(l-x)^{2}}}}从点P到点Q的光程 D 为根据费马原理,光线在真空中传播的路径是光程为极值的路径。取光程 D {displaystyle D} 对 x {displaystyle x} 的导数,令其为零:但其中− l − x b 2 + ( l − x ) 2 = − sin ⁡ θ 2 {displaystyle -{frac {l-x}{sqrt {b^{2}+(l-x)^{2}}}}=-sin theta _{2}} 。即这就是反射定律设l =30图示反射光程随 X 的变化,当x= 15 时,显然光程最短。球面的半径=R光线从直径一端Q射向球面,反射到直径另一端P光程 D = y 2 + ( R + x ) 2 + y 2 + ( − x + R ) 2 {displaystyle D={sqrt {y^{2}+(R+x)^{2}}}+{sqrt {y^{2}+(-x+R)^{2}}}}因 y 2 = R 2 − x 2 {displaystyle y^{2}=R^{2}-x^{2}} ;所以D = 2 R 2 + 2 x R + − 2 x R + 2 R 2 {displaystyle D={sqrt {2R^{2}+2xR}}+{sqrt {-2xR+2R^{2}}}}根据费马原理, D'=0D ′ = R 2 R 2 + 2 x R − R − 2 x R + 2 R 2 = 0 {displaystyle D'={frac {R}{sqrt {2R^{2}+2xR}}}-{frac {R}{sqrt {-2xR+2R^{2}}}}=0}解之, 得 x = 0 {displaystyle x=0} ,代入D得到:光程 D = 2 2 R {displaystyle D=2{sqrt {2}}R} ,乃是一个最大值=2.8R;(最小值光程是从直径一端到Q另一端P,光程=2R)如右图所示,设定介质1、介质2的折射率分别为 n 1 {displaystyle n_{1}} 、 n 2 {displaystyle n_{2}} ,光线从介质1在点O传播进入介质2,则斯涅尔定律以方程表达为其中, θ 1 {displaystyle theta _{1}} 为入射角, θ 2 {displaystyle theta _{2}} 为折射角。从费马原理,可以推导出斯涅尔定律。光线在介质1与介质2的速度 v 1 {displaystyle v_{1}} 和 v 2 {displaystyle v_{2}} 分别为其中, c {displaystyle c} 是真空光速。由于介质会减缓光线的速度,折射率 n 1 {displaystyle n_{1}} 和 n 2 {displaystyle n_{2}} 都大于 1 {displaystyle 1} 。从点Q到点P的传播时间 T {displaystyle T} 为根据费马原理,光线传播的路径是所需时间为极值的路径,取传播时间 T {displaystyle T} 对 x {displaystyle x} 的导数,设定其为零:其中 x x 2 + a 2 = sin ⁡ θ 1 {displaystyle {frac {x}{sqrt {x^{2}+a^{2}}}}=sin theta _{1}}( l − x ) ( l − x ) 2 + b 2 = sin ⁡ θ 2 {displaystyle {frac {(l-x)}{sqrt {(l-x)^{2}+b^{2}}}}=sin theta _{2}}因此得到传播速度与折射角的关系式:将传播速度与折射率的关系式代入,就会得到斯涅尔定律:伯努利家族的约翰·伯努利在解决最速降线问题时曾利用到费马原理。他将小球运动类比作光线的运动,从而得出最速降线为摆线。

相关

  • 碳青霉烯碳青霉烯(Carbapenem)是一类广效性抗生素的总称,通常被作为后线抗生素使用,治疗严重的细菌感染。这类抗生素通常仅被用在多重抗药性(MDR)细菌的治疗上。碳青霉烯和盘尼西林、头孢
  • 急迫性尿失禁过动性膀胱(Overactive bladder,简称OAB),又称为膀胱过动症(Overactive bladder syndrome),急迫性尿失禁;欲望性尿失禁(Urge incontinence),经常会有急切的想去排尿的症状,且会对个人的
  • Halal清真(阿拉伯语:حلال‎;拉丁字母转写:ḥalāl 或 halal 或 halaal),阿拉伯语原意为“合法的”。在非穆斯林国家,“清真”指的是符合伊斯兰教规条可食用的食物,与符合犹太教教规的
  • 退役退伍军人(英语:Veteran),指服完常备役或预备役之后,退伍离开军队,恢复一般公民身份,至社会工作的人。在台湾又称为荣民。在韩语中,参加过特定战事的退伍军人(如各国的韩战、越战老兵)
  • Sagan, C.卡尔·爱德华·萨根(英语:Carl Edward Sagan,1934年11月9日-1996年12月20日),美国天文学家、天体物理学家、宇宙学家、科幻作家,和非常成功的天文学、天体物理学等自然科学方面的科
  • 非线性光学非线性光学主要用来研究非线性的光学现象和理论。介质产生的极化强度决定于入射光的电场强度,其作用可用多项式展开成多阶形式.在通常的弱光条件下,高阶项因为系数很小而可以
  • 阿卜杜拉赫曼·瓦希德阿卜杜拉赫曼·瓦希德(印尼语:Abdurrahman Wahid( 读音 帮助·信息,1940年9月7日-2009年12月30日),华语姓氏陈 印度尼西亚政治家,盲人政治家,民族觉醒党创立者,曾任印度尼西亚总统(199
  • HClOsub3/sub氯酸,化学式为HClO3,是氯的含氧酸之一,其中氯的氧化态为+5。它具强酸性(pKa≈−1)及强氧化性,可用于制取多种氯酸盐。它可由氯酸钡与硫酸反应,并滤去硫酸钡沉淀得到:或用次氯酸加热
  • 紫磷磷的同素异形体有许多种,其中白磷和红磷最为常见。另外还存在紫磷和黑磷。气态磷单质中有P2分子与磷原子。白磷(因商品白磷常带黄色,故又称为黄磷:180),分子式P4,为白色固体,质软。
  • 卢瓦尔河谷卢瓦尔河谷地区(法语:Vallée de la Loire)是一个法国的自然区,被称为“法国的花园”和“法语的摇篮”,以其高质量的建筑遗产著称。这些建筑不仅分布在昂布瓦斯、昂热、布卢瓦、