费马原理

✍ dations ◷ 2025-04-25 05:53:40 #费马原理
费马原理(Fermat principle)最早由法国科学家皮埃尔·德·费马在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是最大值、最小值,甚至是函数的拐点。 最初提出时,又名“最短时间原理”:光线传播的路径是需时最少的路径。费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点。费马原理是几何光学的基本定理。用微分或变分法可以从费马原理导出以下三个几何光学定律:最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光线传播时间都相等。费马原理更正确的版本应是“平稳时间原理”。对于某些状况,光线传播的路径所需的时间可能不是最小值,而是最大值,或甚至是拐值。光从P点出发射向x点,反射到Q点。P 点到 x点的距离 d 1 = x 2 + a 2 {displaystyle d1={sqrt {x^{2}+a^{2}}}}Q 点 到 x 点的距离 d 2 = b 2 + ( l − x ) 2 {displaystyle d2={sqrt {b^{2}+(l-x)^{2}}}}从点P到点Q的光程 D 为根据费马原理,光线在真空中传播的路径是光程为极值的路径。取光程 D {displaystyle D} 对 x {displaystyle x} 的导数,令其为零:但其中− l − x b 2 + ( l − x ) 2 = − sin ⁡ θ 2 {displaystyle -{frac {l-x}{sqrt {b^{2}+(l-x)^{2}}}}=-sin theta _{2}} 。即这就是反射定律设l =30图示反射光程随 X 的变化,当x= 15 时,显然光程最短。球面的半径=R光线从直径一端Q射向球面,反射到直径另一端P光程 D = y 2 + ( R + x ) 2 + y 2 + ( − x + R ) 2 {displaystyle D={sqrt {y^{2}+(R+x)^{2}}}+{sqrt {y^{2}+(-x+R)^{2}}}}因 y 2 = R 2 − x 2 {displaystyle y^{2}=R^{2}-x^{2}} ;所以D = 2 R 2 + 2 x R + − 2 x R + 2 R 2 {displaystyle D={sqrt {2R^{2}+2xR}}+{sqrt {-2xR+2R^{2}}}}根据费马原理, D'=0D ′ = R 2 R 2 + 2 x R − R − 2 x R + 2 R 2 = 0 {displaystyle D'={frac {R}{sqrt {2R^{2}+2xR}}}-{frac {R}{sqrt {-2xR+2R^{2}}}}=0}解之, 得 x = 0 {displaystyle x=0} ,代入D得到:光程 D = 2 2 R {displaystyle D=2{sqrt {2}}R} ,乃是一个最大值=2.8R;(最小值光程是从直径一端到Q另一端P,光程=2R)如右图所示,设定介质1、介质2的折射率分别为 n 1 {displaystyle n_{1}} 、 n 2 {displaystyle n_{2}} ,光线从介质1在点O传播进入介质2,则斯涅尔定律以方程表达为其中, θ 1 {displaystyle theta _{1}} 为入射角, θ 2 {displaystyle theta _{2}} 为折射角。从费马原理,可以推导出斯涅尔定律。光线在介质1与介质2的速度 v 1 {displaystyle v_{1}} 和 v 2 {displaystyle v_{2}} 分别为其中, c {displaystyle c} 是真空光速。由于介质会减缓光线的速度,折射率 n 1 {displaystyle n_{1}} 和 n 2 {displaystyle n_{2}} 都大于 1 {displaystyle 1} 。从点Q到点P的传播时间 T {displaystyle T} 为根据费马原理,光线传播的路径是所需时间为极值的路径,取传播时间 T {displaystyle T} 对 x {displaystyle x} 的导数,设定其为零:其中 x x 2 + a 2 = sin ⁡ θ 1 {displaystyle {frac {x}{sqrt {x^{2}+a^{2}}}}=sin theta _{1}}( l − x ) ( l − x ) 2 + b 2 = sin ⁡ θ 2 {displaystyle {frac {(l-x)}{sqrt {(l-x)^{2}+b^{2}}}}=sin theta _{2}}因此得到传播速度与折射角的关系式:将传播速度与折射率的关系式代入,就会得到斯涅尔定律:伯努利家族的约翰·伯努利在解决最速降线问题时曾利用到费马原理。他将小球运动类比作光线的运动,从而得出最速降线为摆线。

相关

  • 镍铁电池镍铁电池是众多充电电池中的一种,它的阳极是氢氧化镍,阴极是铁,电解质(电解液)是氢氧化钾。这种电池的电压通常是1.2V。它很耐用,能够经受一定程度的使用事故(包括过度充电、过度
  • UNII特殊成分标识(UNique Ingredient Identifier,UNII)是一种公用、免费、独特、明确、非语义的分子结构资讯识别系统,本物质注册系统(SRS)由美国食品药品监督管理局(FDA)及美国药典(USP)
  • 班夫国家公园班芙国家公园(英语:Banff National Park,法语:Le Parc national Banff)建于1885年,是加拿大历史最悠久的国家公园。它坐落于落基山脉北段,距加拿大阿尔伯塔省卡尔加里以西约110-180
  • Buerger病血栓闭塞性脉管炎(Thromboangiitis obliterans,TAO),又称为Buerger病(Buerger's disease)是一种以中小动静脉节段性、非化脓性炎症和动脉腔内血栓形成为特征的慢性进行性闭塞性疾
  • 伊特鲁里亚伊特鲁里亚(Etruria),也译作伊特鲁利亚、埃特鲁里亚、伊楚利亚,是处于现代意大利中部的古代城邦国家。伊特鲁里亚的位置在包括了现今托斯卡纳、拉齐奥、翁布里亚的区域。伊特鲁
  • bspan style=color:black;直布罗陀海峡/span/b直布罗陀海峡(英语:Strait of Gibraltar;西班牙语:Estrecho de Gibraltar;阿拉伯语:مضيق جبل طارق‎)是位于欧洲与非洲之间,分隔大西洋与地中海的海峡,其名取自伊比利半岛
  • 宇宙神-5宇宙神5号运载火箭(英语:Atlas V),为洛克希德马丁公司所研制的不可重复使用之运载火箭,现由洛克希德马丁与波音公司研制,隶属联合发射同盟,航空喷气公司则负责宇宙神5型运载火箭固
  • 巨河狸巨河狸(学名:Castoroides),是啮齿目的巨型种,长达2.5米及估计重60-100公斤,有些估计甚至达220公斤。它们生存于更新世的北美洲,在1万年前最后一次的冰河时期末灭绝。巨河狸的灭绝可
  • 化能合成作用化能合成作用(英语:Chemosynthesis),是一些细菌等自养生物通过将无机物分子(如氢气、硫化氢或甲烷)氧化,再利用氧化获得的化学能将一碳无机物(如二氧化碳)和水合成有机物的营养方式。
  • 电阻在电磁学里,电阻是一个物体对于电流通过的阻碍能力,以方程定义为其中, R {\displaystyle R} 为电阻, V