✍ dations ◷ 2025-12-07 05:22:29 #类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格(英语:Free_lattice#The_complete_free_lattice)。真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。

相关

  • 气溶胶气悬胶体(aerosol;又称 气溶胶、烟雾质),是指固体或液体微粒稳定地悬浮于气体介质中形成的分散体系,其中颗粒物质则被称作悬浮粒子,其粒径大小多在0.01-10微米之间,根据其生成原因
  • 菌株分型(strain)是生物学分类使用的概念。指病毒的毒株。例如,不同的流感毒株的感染性不同。细菌或真菌的菌株。是具有不同基因型并能稳定遗传的亚型。植物学与农学的品系,指源自共
  • DICOM医疗数位影像传输协定(DICOM,Digital Imaging and Communications in Medicine)是一组通用的标准协定,在对于医学影像的处理、储存、打印、传输上。它包含了档案格式的定义及网
  • 碳头孢烯碳头孢烯(英语:Carbacephems)是一类合成的头孢菌素类抗生素,和头孢烯结构上类似,不过5号位置由亚甲基取代了原来的硫原子。碳头孢烯类抗生素通过抑制细胞壁合成来抑制细菌。羧基
  • 利什曼病利什曼病(英语:Leishmaniasis)是一种由寄生原生动物利什曼原虫造成的疾病,是由特定种类的白蛉叮咬所散播。这种疾病主要分为三种:皮肤、黏膜及内脏的利什曼疾病。皮肤利什曼病会
  • 粘孢子总门粘孢子总门(学名:Myzozoa)是一个非正式的分类,位于囊泡藻界。它是顶复门与双鞭毛虫门的合称。二者具有很近的亲缘关系,同样feed through myzocytosis。
  • H10N8甲型流行性感冒病毒H10N8亚型(英语:Influenza A virus subtype H10N8,记作A(H10N8)或H10N8)是一种甲型流感病毒,是禽流感病毒或禽流感病毒的一个亚型,由不同毒株经过基因重排产生
  • 马耳他坐标:35°57′32″N 14°24′43″E / 35.95889°N 14.41194°E / 35.95889; 14.41194面积以下资讯是以2011年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2016年估计国
  • 先天性免疫先天免疫系统(英语:Innate immunity)又称为非特异性免疫、固有免疫、非专一性防御,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异
  • 浸水礼洗礼(英语:Baptism),又称浸礼、圣洗圣事、施洗、受洗和受浸,是一宗教仪式,现普遍指基督教的传统仪式。据《圣经》记载,施洗约翰曾为耶稣施洗,而这亦是耶稣吩咐的。洗礼一词来自通用