✍ dations ◷ 2025-11-23 17:32:26 #类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格(英语:Free_lattice#The_complete_free_lattice)。真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。

相关

  • 慢性肺部阻塞疾病慢性阻塞性肺疾病(英语:Chronic obstructive pulmonary disease,缩写为COPD),常简称为慢阻肺。是一种以持续性的气流受限为特征的阻塞性肺疾病(英语:Obstructive lung disease)。其
  • 螨传播螨(英语:mite, 音mán)是一种八足生物,是蜘蛛的近亲。螨的体形极小,必须借助显微镜观察。螨又可分为尘螨(dust mite)与农业螨,其中农业螨又有叶螨(spider mite)、拟叶螨(false spider mi
  • 核形虫目核形虫是一类原生生物,具有丝状伪足,生活在土壤和淡水里。它们与同样具有丝状伪足的vampyrellid形态上非常相似,但可以通过线粒体的盘状嵴来鉴别。核形虫与动物、真菌以及其它
  • 迈克尔·弗兰德利迈克尔·路易斯·弗兰德利(1945年-),是加拿大安大略省约克大学的心理学教授,以及统计学顾问服务部(Statistical Consulting Service)的副协调员。迈克尔·弗兰德利于1972年从美国普
  • 红斑红斑(希腊文:erythros,意思是红色)是因为皮肤表面毛细血管的血管扩张,造成皮肤或黏膜充血发红的症状。红斑会因为皮肤受伤、感染或发炎而出现。也有一些和疾病无关的皮肤红斑,例
  • 阿尔基罗库斯卡尔基罗库斯(英语:Archilochus),(前680年-前645年)。古希腊最早的抒情诗人。与荷马齐名。他曾参与殖民萨索斯的相关活动,后于此阵亡。他因为女儿内奥布勒的出嫁一事与吕坎拜斯发生
  • 教父时期教父(英语:Church Fathers,或 Fathers of the church),又译为天主教早期教父(Early Church Fathers),是天主教会(基督教)早期宗教作家及宣教师的统称。他们的著作被认定具备权威,可以作
  • 细胞内寄生物细胞内寄生物(英语:Intracellular parasite)是指一类寄生于宿主细胞中生长、繁殖的生物,可分为兼性(Facultative)和专性(Obligate)寄生物。部分细胞内寄生物会导致相关疾病的发生。
  • 亨廷顿病亨廷顿舞蹈症(Huntington's Disease, HD)是一种遗传性疾病,会导致脑细胞死亡。早期症状往往是情绪或智力方面的轻微问题,接着是不协调和不稳定的步伐(英语:Gait)。随着疾病的进展,身
  • 简单扩散扩散作用是一个基于分子热运动的输运现象,是分子通过布朗运动从高浓度区域(或高化势)向低浓度区域(或低化势)的运输的过程。它是趋向于热平衡态的驰豫过程,是熵驱动的过程。菲