✍ dations ◷ 2025-11-27 17:38:55 #类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格(英语:Free_lattice#The_complete_free_lattice)。真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。

相关

  • 大脑大脑(英语:Cerebrum),由左右两个大脑半球组成。将两个半球隔开的是称为大脑纵隔的沟壑,两个半球除了胼胝体相连以外完全左右分开。半球表面布满脑沟,沟与沟之间所夹细长的部分称为
  • 睾丸睾丸,俗称蛋,是雄性动物生殖器官及生殖腺的一部分。是女性卵巢的同源器官。主要作用是产生精子和分泌雄性激素(主要是睾酮)。睾酮的分泌是由脑垂腺前叶分泌的黄体成长激素所控制
  • 阿米卡霉素阿米卡星(amikacin、amikin (amikacin))是一种氨基糖苷类抗生素,用于治疗多种细菌感染。阿米卡星依靠于细菌30S亚基结合,阻断细菌蛋白质合成而起到抗菌作用。阿米卡星一天可以给
  • T淋巴细胞T细胞(英语:T cell、T lymphocyte)是淋巴细胞的一种,在免疫反应中扮演着重要的角色。T是胸腺(thymus)而不是甲状腺(thyroid)的英文缩写。T细胞在骨髓被制造出来之后,在胸腺内进行“新
  • 非洲人类锥虫病非洲人类锥虫病(法语:Trypanosomiasis africain; 英语:African trypanosomiasis)或称昏睡病、嗜睡病(英语:sleeping sickness),是一种由布氏锥虫(英语:Trypanosoma brucei)引起的寄生虫
  • 东南极克拉通东南极克拉通(英语:East Antarctic craton)是一个古老的克拉通,形成今日南极洲的大部分。18亿年前东南极克拉通是妮娜大陆的一部分。在古生代早期东南极克拉通是冈瓦纳大陆的一
  • 马其顿方阵马其顿方阵是由马其顿国王腓力二世(前359年-前336年),所创的军队方阵阵型,以16乘16共256名手持长矛及盾牌的步兵所构成的正方形阵形。马其顿密集方阵由马其顿国王腓力二世所创,其
  • 抗组胺药抗组胺药(法语:Antihistaminique,英语:Antihistamine,德语:Antihistaminikum),通常指H1-受体拮抗剂,是一种,透过对体内H1-受体(组胺受体之一种)的作用,减少组胺对这些受体产生效应,从而减
  • 阿卡德语阿卡德语(akkadû,
  • 德摩根奥古斯塔斯·德摩根(Augustus De Morgan,1806年6月27日-1871年3月18日,英语发音.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI",