✍ dations ◷ 2025-12-05 11:46:21 #类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格(英语:Free_lattice#The_complete_free_lattice)。真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。

相关

  • NN00-N08 肾小球疾病N10-N16 肾小管、间质疾病N17-N19 肾衰竭N20-N23 尿石病N25-N29 肾和输尿管的其他疾患N30-N39 泌尿系统的其他疾病N40-N51 男性生殖器官疾病N60-N64 乳房
  • 分生孢子分生孢子(Conidium、复数为Conidia)有时又被称作厚壁孢子或厚壁分生孢子,是一种无性、且不会移动的真菌孢子。其名称取自于古希腊文的土壤κόνις kónis,也称有丝分裂孢子,因
  • 演替演替(英语:succession)是指在群落发展变化过程中,由低级到高级,由简单到复杂,一个阶段接着一个阶段,一个群落代替另一个群落的自然演变现象。裸地的存在是群落形成的最初条件和场所
  • UniProtUniProt(联合的蛋白)是一个全面的,高质量的,免费使用的蛋白质序列与功能信息数据库,许多内容来自基因组计划,它还包含了大量来自研究文献的关于蛋白的生物学功能信息。UniProt共同
  • 相关在概率论和统计学中,相关(Correlation),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许
  • 胸腔外科胸腔外科学或称心胸肺外科(英语:Cardiothoracic Surgery),是一门医学专科,专门研究胸腔内器官,包括心脏、肺、气道与呼吸系统、胸壁、纵隔、膈肌和食道等,以及这些器官与部位的诊断
  • 无地王约翰约翰(英文:John,1166年12月24日-1216年10月19日),英格兰国王,由1199年到1216年在位。亨利二世第五子,母亲为阿基坦的埃莉诺,而幼王亨利、狮心王理查、布列塔尼公爵若弗鲁瓦二世则是约
  • 天王补心丸天王补心丹是中医药学传统方剂。同名方约有9首。《校注妇人良方》卷六:人参(去芦)、玄参、丹参、茯苓、远志、桔梗各五钱,生地黄四两,当归酒浸、五味、天门冬、麦门冬去心、柏子
  • 洗鼻鼻冲洗(英语:Nasal irrigation),又称鼻腔冲洗、鼻窦浇灌、鼻内冲洗、洗鼻、鼻窦盥洗,是清洁及稀释鼻腔内的过敏原、鼻涕、干掉的鼻涕及脏污的一种方法,可以缓解鼻塞、过敏性鼻炎、
  • 大气压力气压的国际单位制是帕斯卡(或简称帕,符号是Pa),泛指是气体对某一点施加的流体静力压强,来源是大气层中空气的重力,即为单位面积上的大气压力。在一般气象学中人们用千帕斯卡(KPa)、