首页 >
类
✍ dations ◷ 2025-11-22 16:31:25 #类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格(英语:Free_lattice#The_complete_free_lattice)。真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。
相关
- 大环内酯类抗生素大环内酯(macrolides),或称大环内酯,是一组其作用在于结构内的“大环”的药物(一般都是抗生素),这个大环亦即是一连结一个或多个脱氧糖(多是红霉糖(英语:cladinose)及去氧糖胺(英语:desos
- 外寄生物外寄生物感染是指主要由外寄生物引起的寄生虫病。外寄生物即暂时或永久寄生于宿主体表的寄生物。例如:治疗外寄生物感染常使用杀外寄生虫药(英语:ectoparasiticide),以杀死外寄生
- 季铵盐季铵盐,又称四级铵盐是铵离子的四个氢离子都被烃基取代后形成的季铵阳离子的盐,具有通式 R4N+X−。其中四个烃基可以相同,也可以不相同,X−多为卤素阴离子,HSO4−,RCOO−及OH−(季
- 艾滋病毒抗体测试HIV检测,指检测人体是否感染人类免疫缺陷病毒,做为输血、器官移植前的检查和艾滋病的诊断、治疗及追踪。HIV检测是侦测血浆、血清、唾液、干血点或尿液等人体体液之中的抗体、
- 垃圾食物垃圾食品(英语:Junk Food,或称垃圾食物)是指被认为不健康的食品,WHO所提示的不健康食品是以比较的方式呈现,比如高能量且高蔗糖高脂肪的饮食比低能量饮食(比如水果或蔬菜)不健康;每日
- 蛋蛋,是卵生的羊膜动物所生带有硬壳的卵,受精之后可孵出小动物,为人类食用已有几千年历史。蛋由蛋壳保护,而当中的蛋白和蛋黄被各种薄膜包裹。蛋黄和全蛋存储大量的蛋白质、胆碱和
- 断奶断奶是哺乳动物幼体在经过一段时间的母乳喂养之后停止进食母乳,并开始向成年体饮食转换的一个过程。只有哺乳动物才需要经过这一过程,而当幼体完全不进食母乳时就标志着完全断
- 永田町永田町(日语:永田町/ながたちょう Nagatachō */?)是日本东京都千代田区南端的地名。国会议事堂、国立国会图书馆、总理大臣官邸(日本首相府)、众议院议长公邸(日语:衆議院議長公
- 语系列表自然语言应当按照语言间的起源和演化关系来分类,但由于语言与生物物种不同,任何语言都能相互影响,使得语言分类十分困难,语言间到底是借词、同源还是语言联盟亦或三者都有,很多时
- 发音器官人的发音器官或称言语器官是用来发声的器官。包括呼吸器官、喉头、口腔和鼻腔。可以细分为:
