首页 >
类
✍ dations ◷ 2025-07-09 11:52:47 #类
在集合论及其数学应用中,类是集合(或其他数学物件)的搜集(collection),可以依所有成员所共享的性质被无歧定义。有些类是集合(例如由所有偶数构成的类),但有些则不是(如所有序数所构成的类或所有集合所构成的类)。一个不是集合的类被称之为真类。一个是集合的类被称为“小类”。在数学里,有许多物件对集合而言太大,而必须以类来描述,像是大的范畴和超实数的类体之类等。要证明一给定“事物”为一真类,一般的做法是证明此一“事物”至少有着如序数一般多的元素。有关此一证明的例子,请参见完全自由格(英语:Free_lattice#The_complete_free_lattice)。真类不能是一个集合或者是一个类的元素,而且不受ZF集合论中的公理所限制;因此避免掉了许多朴素集合论中的悖论。反而,这些悖论成了证明某一个类是否为真类的方法之一。例如,罗素悖论可以证明由所有不包含集合自身的集合所构成的类是一个真类,而布拉利-福尔蒂悖论则可证明所有序数所构成的类是一个真类。标准的ZF集合论公理不会论及到类;而在元语言中,类只作为逻辑公式的等价类而存在。冯诺伊曼-博内斯-哥德尔集合论则采取了另一种方式;类在此一理论中是基础的物件,而集合则被定义为可以是其他某些类的元素的类。真类,则为不可以是其他任何类的元素的类。在其他集合论如新基础集合论或半集合的理论中,“真类”的概念依然是有意义的(不是任一堆事物都会是集合),但对集合特质的认定并非依据其大小。例如,所有包含全集的集合论都会有个是集合的子类的真类。“类”这一词有时会和“集合”同义,最为人知的是“等价类”这一术语。这种用法是因为从前对类和集合不如现今一样地区别的缘故。许多19世纪之前对“类”的讨论提及的实际上是集合,又或者会是个更为模糊的概念。
相关
- 革兰氏染色法革兰氏染色(英语:Gram Staining)是用来鉴别细菌的一种方法:这种染色法利用细菌细胞壁上的生物化学性质不同,可将细菌分成两类,即革兰氏阳性(英语:Gram Positive)与革兰氏阴性(英语:Gram
- HDN新生儿溶血症(HDN, Hemolytic disease of the fetus and newborn)是一种第二型过敏反应,是由于母亲和胎儿的血型不同而引起的疾病。若母亲体内有对抗胎儿血型的抗体,这些抗体便
- 黄曲毒素黄曲毒素(aflatoxin),也称作黄曲霉素,黄曲霉毒素,是一种有强烈生物毒性的化合物,常由黄曲霉及寄生曲霉等另外几种霉菌在霉变的谷物中产生,如大米、豆类、花生等,是目前为止最强的致
- 产黄青霉菌产黄青霉菌是一种广泛存在于自然界中的霉菌,特别是在食物或者室内环境中最为常见。是生产青霉素的重要工业菌种。1942年,由牛津大学的病理学家弗洛里及德国生物化学家钱恩在美
- 利妥昔单抗利妥昔单抗(通用名,国际非专利药品名称:Rituximab,由罗氏Roche药厂所生产的商品名为Mabthera (全球)、莫须瘤 (台湾);而由Genentech药厂所生产的商品名为Rituxan(全球)),是一种作用
- 白俄罗斯欧洲(深灰色) —白俄罗斯共和国(白俄罗斯语:Беларусь,转写:Biełaruś;IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI
- 加拿大卫生部加拿大卫生部(英语:Health Canada,法语:Santé Canada)是加拿大联邦政府中掌管公共卫生的部门。
- 百年战争百年战争(英语:Hundred Years' War;法语:Guerre de Cent Ans)是1337年至1453年期间,发生在金雀花王朝治下的英格兰王国和瓦卢瓦王朝治下的法兰西王国之间,针对法兰西王国统治权的战
- 不列颠群岛坐标:54°N 4°W / 54°N 4°W / 54; -4不列颠群岛(British Isles)是欧洲西北海岸外,大西洋上的群岛。主要包括大不列颠岛、爱尔兰岛、马恩岛、设德兰群岛、奥克尼群岛、赫布里
- 胎盘早期剥离胎盘早期剥离(Placental abruption)是指胎盘提早和子宫分离,也就是在分娩前就和子宫分离。胎盘早期剥离最常出现在怀孕25周时。症状包括阴道出血、下腹痛,以及足以造成休克的低