首页 >
终端速度
✍ dations ◷ 2025-07-07 06:49:53 #终端速度
在流体动力学中,当物体在流体中运动时,在流体向物体运动反方向所施的力下,物体的运动速度因而不变,这时物体所移动的速度就是终端速度。当向下的重力(Fg)相等于向上的阻力(Fd)时,自由落体中的物体会达到终端速度。此时物体的合力为零,因此物体的速度保持不变。当物体加速的时候(一般是因为重力而向下加速),施向物体的抗力也在增加,使得加速度慢下来。在某一个速度下,所产生的抗力会相等于物体的重量(
m
g
{displaystyle mg}
)。这时候物体停止加速,并持续以不变的速度下落,这个速度就是终端速度(也叫沉降速度)。终端速度直接随着重量与阻力的比值而变。更大的抗力代表较低的终端速度,而更大的重量则代表较高的终端速度。若一向下移动物体的速度大于终端速度(比方说它受一向下的力影响,或它掉进了较薄的大气层区域,或它的形状改变),它的速度会慢下来,直至达到终端速度为止。举例说,基于风阻,一个采取俯伏向下自由落体姿势的跳伞员,其终端速度约为195km/h(55m/s)。这个速度是整个加速过程的渐近极限值,因为作用在身体上的有效力在接近终端速度的过程中,愈来愈接近互相平衡的状态。在这个例子中,要达到终端速度的50%只需要3秒,达到90%则需要8秒,而达到99%就需要15秒,如此类推。如果跳伞员把四肢拉起来的话,终端速度会提高。在这个例子中,终端速度会提升至320km/h(90m/s),几乎到达游隼向下追捕猎物时的速度;一粒典型的.30-06步枪子弹在垂直下坠时也会达到这样的终端速度——垂直下坠可能是因为被向上射击后要回到地面,又或是从高楼上掉下——其速度是来自于一份1920年的美军军械研究报告 。竞速跳伞员会使用头向下俯冲的姿势来达到更高的速度,2012年之前的世界纪录由约瑟夫·基廷格在1960年所创下,速度为988km/h,当时位于海拔较高的地方,因此大气层较为稀薄,空气阻力较小 。菲利克斯·保加拿为了打破此纪录,在2012年10月15日从39公里高的同温层跳下,最高时速高达1357.6km/h,是目前的世界纪录保持人。一向着地球表面下坠物体的速度,每秒钟会增加每秒钟9.806米(即加速度为9.806m‧s-2)。物体会达到终端速度的原因是,阻力的大小与速度的平方成正比。在低速时,阻力比重力要小得多,所以物体加速。当物体在加速时,阻力增加,直至与重量相等。阻力同时亦取决于投影面积。就是因为这个原因,相对于质量有着大投影面积的物体,如降落伞,比其他这方面小的物体,如子弹,有着更低的终端速度。数学上,无视浮力的终端速度可用下式表示:其中数学上,一物体渐近地到达终端速度。由周遭流体向物体所施的向上力所造成的浮力效应,可用阿基米德定律来描述:质量
m
{displaystyle m}
必须减去所排开的流体质量
ρ
V
{displaystyle rho {mathcal {V}}}
,其中
V
{displaystyle {mathcal {V}}}
为物体的体积。所以不使用
m
{displaystyle m}
,在各方程中改用约化质量
m
r
=
m
−
ρ
V
{displaystyle m_{r}=m-rho {mathcal {V}}}
。在地球上,一物体的终端速度取决于流体的性质、物体的质量及其横截表面积的投影大小。空气密度随着海拔减少而增加,海拔每减少80米,密度就增加约1%(使用气压公式)。若物体下降时穿越大气层,每下降160米,终端速度就会减少1%。当物点达到所处点的终端速度后,若持续下降,则物体会因为新位置的终端速度而减速。数学上,把向下定义为正方向,物体在接地球表面落下是所受的合力Fnet为(根据牛顿第二运动定律):其中:
a为加速度,
FD为阻力。根据阻力公式:将上两式结合可得在平衡时,合力为零(F=0):解v可得,阻力方程为取'k = 1⁄2ρACd,此时方程的形式较为实用。两边一起除以m得整理方程得取两边积分得其中α = ( k⁄mg )1⁄2.积分后,得或简化形式反双曲正切函数(arctanh)的定义为:故方程解的积分为上式可简化成其中tanh为双曲正切函数。设g为正数(它的定义确实是正数),然后把α的值代入,得代入k = 1⁄2ρACd,得v所需的形式当时间趋向无限(t → ∞),双曲正切趋向1,得终端速度能量守恒方程为分离v得到当时间趋近无限,即高度趋近于无限( h = vt , v 始终为正), h → ∞ , 故以上式子取极限得当考虑浮力效应时,因自身质量而在流体中下沉的物体,若其合力为零,就会达到终端速度(沉降速度)。当达到终端速度时,物体的重量会正好等于向上的浮力与阻力之和。即:其中若下沉的物体是球状的,则三种力的表示式如下:其中将方程(2)至(4)代入至方程(1),求解
V
t
{displaystyle V_{t}}
的值,得下式:对流体内非常慢的运动而言,相对于其他力,流体的惯性力是无关重要的(假设流体无质量)。这样的流被称为蠕流,而蠕流需要满足雷诺数
R
e
≪
1
{displaystyle Rell 1}
的条件。蠕流的运动方程(简化后的纳维-斯托克斯方程)如下:其中:流过球体的蠕流解析解最早由乔治·斯托克斯于1851年提出。从斯托克斯的解可得作用于球体的阻力其中雷诺数
R
e
=
ρ
d
V
μ
{displaystyle Re={tfrac {rho dV}{mu }}}
。方程(6)中表示阻力的式子又被称为斯托克斯定律。把
C
d
{displaystyle C_{d}}
的值代入至方程(5),可得球状物体在蠕流条件下的终端速度表示式:蠕流的计算结果可被用于研究近海底沉积粒子的沉降,及大气层中下降的水滴。其原理被应用于落球式黏度计,一种量度高黏度流体黏度的实验装置。
相关
- 有孔虫界有孔虫界(学名:Rhizaria)为原生生物的一条主线。它们的形态差别很大,但主要部分均为变形虫状(amoeboid)并有丝状、网状或小管型支撑的假足。它们部分会制造可能有复杂结构的外壳或
- 土木工程土木工程(civil engineering),在中国大陆原先翻译为“公民建”(公用与民用建筑),是指一切和土、木有关的基础建设的计划、建造和维修。现时一般的土木工作项目包括:能源、水利及交
- 多聚腺苷酸化多腺苷酸化(英语:Polyadenylation)是指多聚腺苷酸与信使RNA(mRNA)分子的共价链接。在蛋白质生物合成的过程中,这是产生准备作翻译的成熟mRNA的方式的一部分。在真核生物中,多聚腺苷
- 阿莱尼亚阿莱尼亚航空工业是过去一家意大利的宇航工业公司,Finmeccanica集团的子公司。阿莱尼亚是参与欧洲台风和IDF项目的成员之一,阿莱尼亚也为包括波音和空中客车系列在内的许多民
- 非传统生物非传统生物(Alternative biology)或者称为另类生物、替代生物是指基于替代现有生物学理论的非传统生命形式,例如非细胞生物、非碳基生命、外星生命、混合了有机体与电子机器的
- Lisub2/subO氧化锂(Li2O)是一种无机化合物,可透过锂在空气或氧气中燃烧而得,过程中会伴随生成少量的过氧化锂。高纯度的Li2O可由过氧化锂(Li2O2)在450°C的热分解中制得。一般来说,氧化锂是
- 胡正明胡正明(1947年7月12日-),北京出生的台湾人,籍贯江苏金坛,美籍华裔微电子学家,柏克莱加州大学教授,原台积电技术首席执行官。胡正明于1947年出生于北京,后前往台湾,1968年毕业于国立台
- 游离基自由基(英语:Free Radical),又称游离基,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。在书写时,一般在原子符号或者原子团符号旁边加上
- 无彩色此列表仅列出常见的色彩,色彩的多样性使得在实际上难以全部列举或命名。另外由于各种显示器在未经校正前有色差存在,因此以下的色彩呈现仅供参考。本列表依三原色光模式、印刷
- 碳足迹碳足迹亦译碳足印,盖指每个人、家庭或每家公司日常释放的温室气体数量(以二氧化碳即CO2的影响为单位),用以衡量人类活动对生态环境的影响。根据以下步骤,可以有效减少碳足迹:最后