首页 >
潮汐加速
✍ dations ◷ 2025-01-22 18:54:28 #潮汐加速
潮汐加速是行星与其卫星之间潮汐力的效应。这种“加速”通常都是负面的效应,如果卫星是在顺行轨道上运行,会逐渐退行和远离行星(卫星的角动量增加),相对的,行星的自转也会减缓(角动量守恒)。这个过程最终会导致质量小的先潮汐锁定,然后大的也会如此。地月系统是研究这种情况的最佳事件。卫星轨道周期短于主星(行星)的自转周期,或是逆行轨道的状况,称为潮汐减速,是一种类似的程序(卫星的角动量减少)。在1695年,爱德蒙·哈雷首先建议:与古代的日食观测比较,月球的平均运动显然是越来越快,但是它没有提出数据(在哈雷的时代还不知道发生了什么,包括地球自转速度的减缓:参见历书时。当不再使用均一的时间而使用平太阳时测量时,显示影响是正加速度)。在1749年,理查·敦桑重新审视了古代的纪录,确认了哈雷的怀疑,并且制作第一个大小和外观效应的量化估计。在月球经度上每百年的偏移量是+10"(角秒,在当时是出乎意料好的结果,与稍后确认的值,例如1786年迪·拉朗得,并能与一世纪后从10"到接近13"的值比较)。皮埃尔-西蒙·拉普拉斯在1786年以分析月球的平均运动加速为理论基础,回应摄动改变了地球环绕太阳轨道的离心率。拉普拉斯初步的计算解释整体的效应,似乎以理论简洁的拴住了现在与古代的观测。然而,亚当斯在1854年重启拉普拉斯的计算,因而发现问题中的错误:很明显的,拉普拉斯以地球轨道离心率的变化为基础,只能够解释约一半的月球加速度。亚当斯的发现引起天文学家持续数年的尖锐争议,但它的结论是正确的,包括德朗奈等其他的数学天文学家,最后都接受了。这个问题取决于正确的分析月球运动,几乎在同一时间,进一步发现另一个复杂的,计算月球的另一项长期摄动(被认为是由金星引起的)也是错误的。重新审视发现几乎可以忽略不计,实际上是从理论中消失了。德朗奈和威廉·佛雷尔在1860年代独立的给了部分的答案:地球自转率的潮汐迟滞是时间单位的延长,和导致月球的加速是显而易见的。天文社群花了一些时间以接受潮汐效应的事实和作用的规模,但以平均太阳时来测量,最终很明显的涉及三种效应。除了摄动改变地球轨道离心率的效应,拉普拉斯的发现和亚当斯的修正,还有两种潮汐的影响(最早是由Emmanuel Liais(英语:Emmanuel Liais)提出的组合)。首先是潮汐改变了地球和月球之间的角动量,导致月球轨道运动角速率真正的迟滞,这提高了月球环绕地球的角动量(并将月球移至更高更慢的轨道)。其次,月球轨道运动角速度明显的增加(当以平太阳时来测量)。因为月球的质量相较于地球是一个相当大的分数(大约1:81),这两个天体可以视为双行星,而不是一颗行星和卫星。月球环绕地球的轨道平面(白道)很靠近地球环绕太阳的轨道平面(黄道),而不像一般行星的卫星,是在垂直于行星自转轴的平面(赤道)上。月球的质量够大,并且非常靠近地球,因此会造成地球上物质升起的潮汐,特别是海洋中的水,会沿着穿越地球和月球的轴线在两端隆起。平均的潮汐隆起会密切的追随着轨道上的月球,在地球的自转下,潮汐隆起的周期刚刚好超过一天。然而,自转的推动使得潮汐隆起的位置超越了月下点的位置。这样的结果,使得在隆起的部分的大量物质偏移了地月中心联线的轴线方向。而因为这样的偏移,地球的潮汐隆起物质和垂直于地月中心联线的月球引力,即造成地球和月球之间存在着扭矩。这提升了月球的轨道,和造成地球自转的减速。这样的结果是平均的一天,名义上是86,400秒的长度,以越来越稳定的原子钟来测量,与SI的秒比较会越来越长。(SI的秒,在制定时就已经比平太阳时的秒略短了一些))。这微小的差异日积月累下来,会导致我们所用的时钟显示的时间(世界时)和 原子钟与历书时的差距越来越大(参见:ΔT)。这造成需要以不规则的间隔插入闰秒来修正。除了海洋潮汐的影响,也会对地球的地壳造成潮汐变形,但这在以热散逸来表现总体的效果时只占了4%。如果忽略其他的效应,潮汐加速将持续下去,直到地球的自转和月球的轨道周期能够相匹配。到那时候,月球将会固定在地球上某一个点的上方;这种情况已经存在于冥王星和凯伦的系统。但是,地球自转速度减缓得不够快,导致在地球自转延长到一个月之前,其他的效应已经使得这变得无关紧要了。大约从现在起的21亿年之后,不断增强的太阳辐射将导致地球海洋的蒸发,消除了大部分潮汐隆起引起的潮汐摩擦和潮汐加速。即使没有这样,在太阳已经成为红巨星的45亿年后,也足以毁灭地球和月球,而地球的自转仍然未能减缓到一个月的长度(潮汐加速和太阳质量的损失也会让地球远离太阳,但还不知道是否能从毁灭中获得保存)。在太阳系的动力学中,几个潮汐加速的例子是轨道的长期摄动,也就是随着时间持续增加但不定期的扰动。在高阶近似中,来自行星或较小的行星间相互之间主要的摄动,只会导致轨道周期性的变化,也就是说轨道参数会在最大直和最小值之间变换。潮汐效应是这些方程式中的二次项,则会导致无限制的增长。在以行星轨道的数学理论为基础的历表,二次项和高阶长期项都会呈现,但是这些多数都会以泰勒展开式列出很长时间周期的项目。这原因是潮汐效应不同于远距离的重力摄动,摩擦在本质上是潮汐加速的一部分,并且会导致能量以热的形式从动力学系统持续的丧失。换言之,在此处我们没有哈密顿系统。月球和地球的潮汐隆起之间造成的引力扭矩造成月球提升它的轨道,而地球会降低它的自转速度。在任何一个独立的物理系统内,能量和角动量是守恒的。 实务上,地球自转的能量和角动量会转移到月球的轨道运动(然而,大部分的地球自转能量损失都转换成热能,只有1/30转移给月球)。月球远离地球,所以它在地球的重力井(英语:Gravity well)中的位能会增加。它停留在轨道上,并且遵守开普勒第三定律,因此潮汐作用确实会使月球跨越天球的运动速度降低。虽然它的动能减少了,但是位能增加的数值更多。潮汐力在月球的运动方向上有一个分力,因此会增加它的能量,但是地球引力在非潮汐部分的拉力(在平均上)轻微的迟缓了月球运动(在平均上有轻微向外的速度),所以最终的结果是月球减慢了。月球的轨道角动量增加。地球自转的角动量减少,因此引起一天的长度增加。由于地球的自转比月球快速,因此月球在地球上造成潮汐隆起的净效应应该是拖曳在月球的前方。月球在地球上引起的净潮拖提前的月亮由地球的自转速度快得多。潮汐摩擦需要拖曳和维持潮汐隆起在月球的前方,它将在地球和月球之间交换过量的自转和公转能量以热能的形式挥霍掉。如果不存在摩擦和热的消散,月球引力造成的潮汐隆起会很快的(在两天内)回到与月球同步的状态,月球也不会在远离。大部分的损耗发生在边界层和浅海底部的湍流,像是欧洲围绕不列颠岛的暗礁、隔开阿根廷和巴塔哥尼亚的礁石,还有白令海。潮汐摩擦消耗掉的平均能量是3.75兆瓦,其中2.5兆瓦是主要的月球成分M2,其余的来自太阳和月球的其它成分。在地球上不存在着一个平衡潮汐隆起,因为陆地不允许进行如此的数学解决方案。海洋潮汐其实也沿着海洋的盆地旋转,形成辽阔的洋流绕着几个没有潮汐的无潮点。由于地球自转被几个独立的波拖曳著,有些波超前于月球,也有些落在月球之后,还有些是在月球的前后。实际上存在的"隆起"是随着全世界所有海洋被月球拉起的径效应起伏着(它也拉着月球)。地球的净(或等效)平衡潮汐的振幅只有3.23公分,会完全被1米的海洋潮汐吞没掉。从地球的海洋在45亿年前第一次形成开始,这个机制就开始运作。从地质和古生物学的证据显示,在遥远的过去,地球自转的比现在快,月球也比现在更靠近地球。在河口,离岸的沙子和淤泥层交替展现的潮汐韵律显示有很大的潮汐流动,可以找到每日、每月翰季节性周期的淤积。这些可以追溯到6亿2千万年前的地质纪录,符合这些条件:一天的长度是21.9±0.4小时,一年有13.1±0.1朔望,一年有400±太阳日。一年的长度大致上仍维持不变,因为没有证据显示万有引力常数曾经变更。当时和现在的月球远离地球平均速率是每年2.17±0.31公分,这大约是目前速率的一半。月球激光测距(LLR)可以将月球运动的测量准确到几毫米的精确度。激光的脉冲经由1969年至1972年期间的阿波罗计划和1973年月球步行者2号放置在月球表面的镜片反射,测量脉冲返回的时间可以得到非常准确的距离。这些装备配合运动方程式,可以测量月球在经度上的长期加速度的数值,和地-月椭圆轨道半长轴变化的速率。从1970年至2007年这段期间的结果是:这样的结果与卫星激光测距(SLR)一致,一种应用于绕着地球的人造卫星上类似的技术,这产生出包括潮汐的地球重力场模型。这个模形准确的预测出月球运动的变化。最后,古代的日食观测纪录给了那些时刻月球相当准确的位置。研究这些观测的结果也给出与上面引用一致的数值。潮汐加速的另一个结果是地球自转的减速。有许多的因素造成地球自转速度在所有时间尺度(从几小时到几个世纪)上的不稳定。小潮汐的效应在短周期内无法观测到,但以稳定运转的计时器(历书时、原子时)来衡量地球自转累积的效应,很容易就可以观测到几世纪以来每天的时间已经短少了数毫秒。在遥远过去的一些事件,更经历几天或几小时的变动(以地球完整转动一圈来测量,世界时),然后以现在稳定的时计(历书时)来校准,一天的长度是逐渐增加的。这就是所知的ΔT,最近的数值可以从国际地球自转服务(IERS)得到。在过去几个世纪每一天实际长度的表也是可用的。从观测月球轨道的变化,可以计算一天长度的相应变化:然而,从过去2,700年历史的纪录中找到下列的平均值:相应的累积值视系数为T²(世纪时间的平方)的抛物线:地球相对于潮汐减速,是一个自转正在加速的机制。地球不是一颗球体,而更像一颗在两极是扁平的椭球体。SLR显示这个扁平度正在减少。解释是,在冰河期时,大量的冰块堆积在两极,压下了在底层的岩石。在10,000年前,冰开始融解,但是地球的地壳仍未达到流体静力平衡的状态,因此还是会反弹(估计弛豫时间为4,000年左右)。因此,两极的直径正在增加,但是因为密度和质量保持不变,因此体积保持不变;因而赤道直径正在减少。因此,质量更为接近自转轴,这意味着转动惯量的减少。由于总角动量在这个过程中保持不变,因此自转速率会增加。这就是著名的花式溜冰的自旋,当她收拢手臂时自旋的速度就会加快。从观测转动惯量的变化可以计算自转的加速:在历史周期上的平均值应该是−0.6 ms/cy,这很大程度的解释了历史上的观测值。这有两种类型:
相关
- 进食进食又称食、用餐、俗称吃、吃饭,是动物为了保持体能和生命所进行之有序的摄入营养和能量的过程,是动物的一种本能。所有动物都必须进食其他生物才得以生存。不同动物的进食方
- 现代物理学近代物理学(Modern physics)所涉及的物理学领域包括量子力学与相对论,与牛顿力学为核心的古典物理学相异。近代物理研究的对象有时小于原子或分子尺寸,用来描述微观世界的物理现
- 阿普唑仑阿普唑仑(英语:Alprazolam),是一种短效的苯二氮䓬类药物。常见商品名称为赞安诺(英语:Xanax)。最常用于焦虑症,尤其会用于短期治疗恐慌症与广泛性焦虑症(GAD);另有用途为与其他药物并用
- GABAsubB/sub受体γ-氨基丁酸β受体(又名GABABR)是代谢型γ-氨基丁酸(GABA)跨膜受体,其通过G蛋白与钾通道连接。在动作电位结束时,钾浓度的变化使细胞超极化。GABAB介导的IPSP的翻转电位为-100mV,其
- 直剪试验直剪试验全称直接剪切试验(Direct shear test),是土力工程中寻找土的抗剪强度的一种试验。取土的试样放入剪切盒内,将上盒固定,下盒可沿水平方向滑动。首先施加垂直压力,然后在对
- 阳明山国家公园阳明山国家公园是中华民国设置的第三个国家公园,由内政部营建署管辖,前身为台湾日治时期成立之大屯国立公园(1937-1945)。位于台北都会区近郊,行政区域 包括台北市北投区、士林区
- 布尔诺坐标:49°12′00″N 16°37′00″E / 49.20000°N 16.61667°E / 49.20000; 16.61667布尔诺(捷克语:Brno 捷克语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos
- 苏格兰盖尔语苏格兰盖尔语(英语:Scottish Gaelic),或仅简称盖尔语(Gàidhlig;IPA:/ˈgɑːlɪk/),属于凯尔特语族盖尔亚支的一种语言。也被称为高地盖尔语或高地苏格兰语。与苏格兰盖尔语同属盖尔
- NPR全国公共广播电台(英语:National Public Radio,缩写为NPR)是美国一家获公众赞助及部分政府资助、但独立运作的非商业性媒体机构,成立于1970年2月24日,开播于1971年4月。其以广播联
- 氧化胺氧化胺,也称为“胺-N-氧化物”和“N-氧化物”,是一类通式为R3N+-O−(也写作R3N=O或R3N→O)的有机化合物。狭义上的氧化胺指的是三级胺(包括含氮杂环芳香化合物,比如吡啶)的N-氧化物