混合系统

✍ dations ◷ 2025-05-18 23:46:13 #系统理论,微分方程,控制理论,动力系统

混合系统(hybrid system)是同时包括连续及离散动态特性的动力系统,这类系统中同时有“流”(flow,以微分方程描述)以及跳跃(以有限状态机或自动机理论描述)的特性。有时也会用混合动态系统(hybrid dynamical system)这个词语,比较不会和结合人工神经网络及模糊逻辑的系统,或是同时应用电子及机械的系统混唏。混合系统的好处是其结构可以包括更多种类的系统,在针对系统特性建模时也有更大的弹性。

一般而言,混合系统的状态可以用连续变数的值以及其他离散的模式来表示。状态可能依照其“流条件”(flow condition)有连续性的变化,或依照控制图(control graph)有离散的变化。只要所谓的不变量维持不变,就会有连续性的变化,不过若满足了特定的跳跃条件,就会有离散转态。离散转态也可能和事件有关。

混合系统可以用来为许多系统进行建模,包括有碰撞的物理系统、逻辑动态控制器,甚至是互联网拥堵问题等。

弹跳球(英语:bouncing ball)属于有碰撞的物理系统,混合系统中的经典范例。在此例中,球(以点状质量表示)由启始高度掉到地面弹跳,每一次的弹跳都会耗散能量。球在每一次弹跳之间都是连续的动态特性,当球碰到地面时,因为非弹性碰撞,球的速度会有离散的变化。弹跳球的数学模型如下:令 x 1 {\displaystyle x_{1}} 是球的高度, x 2 {\displaystyle x_{2}} 是球的速度,其混合系统如下:

x C = { x 1 > 0 } {\displaystyle x\in C=\{x_{1}>0\}} ,“流”的统御方程为 x 1 ˙ = x 2 , x 2 ˙ = g {\displaystyle {\dot {x_{1}}}=x_{2},{\dot {x_{2}}}=-g} ,其中 g {\displaystyle g} 为因为重力而有的加速度,上述方程指出,若球在地面之上,最终会因为重力而掉到地面。

x D = { x 1 = 0 } {\displaystyle x\in D=\{x_{1}=0\}} ,“跳跃”的统御方程为 x 1 + = x 1 , x 2 + = γ x 2 {\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} ,其中 0 < γ < 1 {\displaystyle 0<\gamma <1} 为耗散系数。方程式是当高度为零(和地面碰撞)时,其速度符号会相反,且会以 γ {\displaystyle \gamma } 的比例减少。这也是非弹性碰撞的特性。

弹跳球系统的特点是有Zeno行为。Zeno行为有严格的数学定义,可以大致描述为系统在有限时间内进行了无限次的“跳跃”。在此例中,弹跳球每次碰到地面,就会损失能量,因此之后碰到地面的时间间隔也就会越来越接近。

有关混合系统的形式验证,有些方法可以自动证明一些混合系统的特性,验证混合系统安全性的常用工具包括可到达集的计算、抽象模型检查(英语:Abstraction model checking)以及barrier certificate(英语:barrier certificate)。

大部分的验证工作都是不可判定问题,因此没有办法找出通用的验证算法。不过,这些工具会在指标性问题上展现其分析能力。这些可以验证所有强健案例的混合系统验证法带来一个可能的理论性结论:混合系统中的许多问题虽然是不可判定的,但至少是准可判定的。

基本的混合系统建模方式可以分为两种:隐式以及显式。显式的方式会用混合自动机(英语:hybrid automaton)、混合程式或是混合Petri网表示。隐式的作法会用统御方程式来表示,因此会得到微分代数方程(英语:differential algebraic equation)(DAE)的系统,也有可以透过混合键结图来表示。

若是考虑混合系统分析的统一仿真方法,有一种以DEVS(英语:DEVS)形式化为基础的方法,其中微分方程的积分子会量化为原子性的DEVS模型。该方法以离散事件系统的行为产生系统的轨迹,和离散时间系统不同。在参考资料、及中有描述该作法的细节,而软件工具PowerDEVS(英语:PowerDEVS)中也有描述。

相关

  • 旋转曲面旋转曲面是一个平面曲线绕着一条直线(旋转轴)旋转所得到的曲面。例子包括球面,由圆绕着其直径旋转而成,以及环面,由圆绕着外面的一条直线旋转而成。如果曲线由参数方程
  • 高邮市北纬32°38'~33°05' 东经119°13'~119°50'高邮市,简称邮,是扬州市代管的县级市。位于中国江苏省中部,京杭大运河沿岸,高邮湖畔。高邮是汉唐时期的各地传信机构,也是中国唯一以
  • 罗素—爱因斯坦宣言罗素-爱因斯坦宣言(Russell–Einstein Manifesto),最初称为《科学家要求废止战争》,是由罗素起草的。罗素与1955年2月11日写信给爱因斯坦讨论这篇宣言,5天后爱因斯坦回信表示赞同
  • 卡洛尔·隆巴德卡洛尔·隆巴德(英语:Carole Lombard,1908年10月6日-1942年1月16日),生于美国印第安纳州,童星出身的美国电影女演员、慈善家。她活跃于20世纪30年代,擅长喜剧角色,而且是当年好莱坞收
  • 古原狐猴古原狐猴()是马达加斯加已灭绝的狐猴,碳十四测年显示古原狐猴可能生存至1500年。古原狐猴的上颚及下颚齿式分别是2:1:2:3及2:0:2:3。它的下门齿很细小及垂直,并呈竹片状。它的臼
  • TierraTierra是生态学家托马斯·S·雷(英语:Thomas S. Ray)在20世纪90年代早期的编写的计算机模拟程序,生成的程序互相竞争,争夺CPU时间和访问主内存,可以自我复制并且有一定几率在复制
  • Apple TVApple TV是一款由苹果公司所设计、营销和销售的数字多媒体机顶盒。它可用作播放来自iTunes Store、Netflix、YouTube、Flickr、MobileMe里的在线内容或电脑上iTunes里的多媒
  • 白萩白萩(“萩”,拼音:qiū,注音:ㄑㄧㄡ;1937年-),本名何锦荣,台中市人,毕业于省立台中商职,台湾诗人。白萩早期曾受日文教育,初中时受张自英的诗集《黎明集》和《骨髓里的爱情》启笛,1952年即
  • 哈拉尔德斯·卡利斯 哈拉尔德斯·卡利斯(拉脱维亚语:Haralds Kārlis,1991年4月29日-),拉脱维亚篮球运动员,现在效力于拉脱维亚篮球联赛球队BK Valmiera。他也代表拉脱维亚国家篮球队参赛。
  • 绒毛槐绒毛槐(学名:),台湾称毛苦参。为豆科苦参属的一个种。别名有绒毛槐(植物分类学报),海南槐(中国主要植物图说-豆科),岭南槐树(中国树木分类学),毛苦豆、岭南苦参、海南槐树原产地于