混合系统

✍ dations ◷ 2025-04-02 14:27:31 #系统理论,微分方程,控制理论,动力系统

混合系统(hybrid system)是同时包括连续及离散动态特性的动力系统,这类系统中同时有“流”(flow,以微分方程描述)以及跳跃(以有限状态机或自动机理论描述)的特性。有时也会用混合动态系统(hybrid dynamical system)这个词语,比较不会和结合人工神经网络及模糊逻辑的系统,或是同时应用电子及机械的系统混唏。混合系统的好处是其结构可以包括更多种类的系统,在针对系统特性建模时也有更大的弹性。

一般而言,混合系统的状态可以用连续变数的值以及其他离散的模式来表示。状态可能依照其“流条件”(flow condition)有连续性的变化,或依照控制图(control graph)有离散的变化。只要所谓的不变量维持不变,就会有连续性的变化,不过若满足了特定的跳跃条件,就会有离散转态。离散转态也可能和事件有关。

混合系统可以用来为许多系统进行建模,包括有碰撞的物理系统、逻辑动态控制器,甚至是互联网拥堵问题等。

弹跳球(英语:bouncing ball)属于有碰撞的物理系统,混合系统中的经典范例。在此例中,球(以点状质量表示)由启始高度掉到地面弹跳,每一次的弹跳都会耗散能量。球在每一次弹跳之间都是连续的动态特性,当球碰到地面时,因为非弹性碰撞,球的速度会有离散的变化。弹跳球的数学模型如下:令 x 1 {\displaystyle x_{1}} 是球的高度, x 2 {\displaystyle x_{2}} 是球的速度,其混合系统如下:

x C = { x 1 > 0 } {\displaystyle x\in C=\{x_{1}>0\}} ,“流”的统御方程为 x 1 ˙ = x 2 , x 2 ˙ = g {\displaystyle {\dot {x_{1}}}=x_{2},{\dot {x_{2}}}=-g} ,其中 g {\displaystyle g} 为因为重力而有的加速度,上述方程指出,若球在地面之上,最终会因为重力而掉到地面。

x D = { x 1 = 0 } {\displaystyle x\in D=\{x_{1}=0\}} ,“跳跃”的统御方程为 x 1 + = x 1 , x 2 + = γ x 2 {\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} ,其中 0 < γ < 1 {\displaystyle 0<\gamma <1} 为耗散系数。方程式是当高度为零(和地面碰撞)时,其速度符号会相反,且会以 γ {\displaystyle \gamma } 的比例减少。这也是非弹性碰撞的特性。

弹跳球系统的特点是有Zeno行为。Zeno行为有严格的数学定义,可以大致描述为系统在有限时间内进行了无限次的“跳跃”。在此例中,弹跳球每次碰到地面,就会损失能量,因此之后碰到地面的时间间隔也就会越来越接近。

有关混合系统的形式验证,有些方法可以自动证明一些混合系统的特性,验证混合系统安全性的常用工具包括可到达集的计算、抽象模型检查(英语:Abstraction model checking)以及barrier certificate(英语:barrier certificate)。

大部分的验证工作都是不可判定问题,因此没有办法找出通用的验证算法。不过,这些工具会在指标性问题上展现其分析能力。这些可以验证所有强健案例的混合系统验证法带来一个可能的理论性结论:混合系统中的许多问题虽然是不可判定的,但至少是准可判定的。

基本的混合系统建模方式可以分为两种:隐式以及显式。显式的方式会用混合自动机(英语:hybrid automaton)、混合程式或是混合Petri网表示。隐式的作法会用统御方程式来表示,因此会得到微分代数方程(英语:differential algebraic equation)(DAE)的系统,也有可以透过混合键结图来表示。

若是考虑混合系统分析的统一仿真方法,有一种以DEVS(英语:DEVS)形式化为基础的方法,其中微分方程的积分子会量化为原子性的DEVS模型。该方法以离散事件系统的行为产生系统的轨迹,和离散时间系统不同。在参考资料、及中有描述该作法的细节,而软件工具PowerDEVS(英语:PowerDEVS)中也有描述。

相关

  • 巴拿马市巴拿马城(西班牙语:Panamá)是中美洲国家巴拿马的首都。它位于巴拿马运河太平洋端的入口,拥有880,691人口,而都市圈更有1,272,672人口居住,而该城亦是巴拿马的政治、行政及文化中
  • 贯众贯众(学名:Cyrtomium fortunei)为鳞毛蕨科贯众属下的一个种。维基物种中有关贯众的数据
  • 兰开斯特兰开斯特 (Lancaster, California)是美国加利福尼亚州洛杉矶县北部的一个城市。面积243.9平方公里,2006年人口140,804人。兰开斯特离洛杉矶大约70英里(110公里)。
  • 预备役美国陆军预备役司令部(英语:United States Army Reserve Command,USARC)
  • 亚庇亚庇国际机场(英语:Kota Kinabalu International Airport;马来语:Lapangan Terbang antarabangsa Kota Kinabalu;IATA代码:BKI;ICAO代码:WBKK),简称亚庇机场,位于马来西亚沙巴州亚庇市
  • 刘二祖刘二祖(?-1215年),金国泰安人,红袄军领袖。崇庆元年(1212年),刘二祖起义抗金,根据于沂蒙山,攻打淄州(今山东省淄博市)、沂州(今山东省临沂市)。贞祐三年(1215年),金军攻破大沫崮,刘二祖受伤被俘
  • 充保充保 (1685年3月21日(康熙二十四年二月十七)-1698年10月31日(康熙三十七年九月二十八)),满洲爱新觉罗氏。顺承恭惠郡王勒克德浑之孙,已革顺承郡王勒尔锦第七子,母继妻舒穆禄氏。康熙二
  • 温纳·哈瑟温纳·哈瑟(德语:Werner Haase,1900年8月2日-1950年11月30日)是一位纳粹德国时期的亲卫队官员与医学教授,同时也是元首阿道夫·希特勒的私人医生之一。哈瑟于1900年8月2日出生在萨
  • 施瓦茨塞山 (采尔马特)坐标:45°59′29″N 7°42′35″E / 45.991384°N 7.709669°E / 45.991384; 7.709669施瓦茨塞山(Lago Schwarzsee),是瑞士的山峰,位于该国西南部,由瓦莱州负责管辖,属于本宁阿尔卑
  • 莫五平莫五平(1958年9月5日-1993年6月2日),中国作曲家,出生于湖南省衡阳市。莫五平1971年开始随其兄学习小提琴。学生时即体现出超常的创造力和强烈的创作冲动,一、二年级时所作艺术歌曲