混合系统

✍ dations ◷ 2025-10-22 10:28:48 #系统理论,微分方程,控制理论,动力系统

混合系统(hybrid system)是同时包括连续及离散动态特性的动力系统,这类系统中同时有“流”(flow,以微分方程描述)以及跳跃(以有限状态机或自动机理论描述)的特性。有时也会用混合动态系统(hybrid dynamical system)这个词语,比较不会和结合人工神经网络及模糊逻辑的系统,或是同时应用电子及机械的系统混唏。混合系统的好处是其结构可以包括更多种类的系统,在针对系统特性建模时也有更大的弹性。

一般而言,混合系统的状态可以用连续变数的值以及其他离散的模式来表示。状态可能依照其“流条件”(flow condition)有连续性的变化,或依照控制图(control graph)有离散的变化。只要所谓的不变量维持不变,就会有连续性的变化,不过若满足了特定的跳跃条件,就会有离散转态。离散转态也可能和事件有关。

混合系统可以用来为许多系统进行建模,包括有碰撞的物理系统、逻辑动态控制器,甚至是互联网拥堵问题等。

弹跳球(英语:bouncing ball)属于有碰撞的物理系统,混合系统中的经典范例。在此例中,球(以点状质量表示)由启始高度掉到地面弹跳,每一次的弹跳都会耗散能量。球在每一次弹跳之间都是连续的动态特性,当球碰到地面时,因为非弹性碰撞,球的速度会有离散的变化。弹跳球的数学模型如下:令 x 1 {\displaystyle x_{1}} 是球的高度, x 2 {\displaystyle x_{2}} 是球的速度,其混合系统如下:

x C = { x 1 > 0 } {\displaystyle x\in C=\{x_{1}>0\}} ,“流”的统御方程为 x 1 ˙ = x 2 , x 2 ˙ = g {\displaystyle {\dot {x_{1}}}=x_{2},{\dot {x_{2}}}=-g} ,其中 g {\displaystyle g} 为因为重力而有的加速度,上述方程指出,若球在地面之上,最终会因为重力而掉到地面。

x D = { x 1 = 0 } {\displaystyle x\in D=\{x_{1}=0\}} ,“跳跃”的统御方程为 x 1 + = x 1 , x 2 + = γ x 2 {\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} ,其中 0 < γ < 1 {\displaystyle 0<\gamma <1} 为耗散系数。方程式是当高度为零(和地面碰撞)时,其速度符号会相反,且会以 γ {\displaystyle \gamma } 的比例减少。这也是非弹性碰撞的特性。

弹跳球系统的特点是有Zeno行为。Zeno行为有严格的数学定义,可以大致描述为系统在有限时间内进行了无限次的“跳跃”。在此例中,弹跳球每次碰到地面,就会损失能量,因此之后碰到地面的时间间隔也就会越来越接近。

有关混合系统的形式验证,有些方法可以自动证明一些混合系统的特性,验证混合系统安全性的常用工具包括可到达集的计算、抽象模型检查(英语:Abstraction model checking)以及barrier certificate(英语:barrier certificate)。

大部分的验证工作都是不可判定问题,因此没有办法找出通用的验证算法。不过,这些工具会在指标性问题上展现其分析能力。这些可以验证所有强健案例的混合系统验证法带来一个可能的理论性结论:混合系统中的许多问题虽然是不可判定的,但至少是准可判定的。

基本的混合系统建模方式可以分为两种:隐式以及显式。显式的方式会用混合自动机(英语:hybrid automaton)、混合程式或是混合Petri网表示。隐式的作法会用统御方程式来表示,因此会得到微分代数方程(英语:differential algebraic equation)(DAE)的系统,也有可以透过混合键结图来表示。

若是考虑混合系统分析的统一仿真方法,有一种以DEVS(英语:DEVS)形式化为基础的方法,其中微分方程的积分子会量化为原子性的DEVS模型。该方法以离散事件系统的行为产生系统的轨迹,和离散时间系统不同。在参考资料、及中有描述该作法的细节,而软件工具PowerDEVS(英语:PowerDEVS)中也有描述。

相关

  • 热力学定律热力学,全称热动力学(法语:thermodynamique,德语:Thermodynamik,英语:thermodynamics,源于古希腊语θερμός及δύναμις),是研究热现象中物态转变和能量转换规律的学科。它着
  • 大分子高分子(Macromolecule)化合物是一个非常大的分子,如蛋白质,通常由较小的亚基(单体)的聚合产生。它们一般由数千或更多的原子组成。通过一定形式的聚合反应生成具有非常高的分子量
  • 入部,就汉字索引来说,是为部首之一,康熙字典214个部首中的第十一个(二划的则为第五个)。就正体中文中,入部归于二划部首,入部通常是从上方或中间为部。且无其他部首可用者将部首归
  • 灭菌锅高压釜(英语:Autoclave,亦称为高壓滅菌釜、高压灭菌器、加压釜或加压灭菌器)是用水蒸汽的高温高压对物品进行灭菌处理的装备。通常的处理条件是在高压饱和蒸汽121摄氏度下处理15
  • 甲申甲申为干支之一,顺序为第21个。前一位是癸未,后一位是乙酉。论阴阳五行,天干之甲属阳之木,地支之申属阳之金,是金克木相克。中国传统纪年农历的干支纪年中一个循环的第21年称“甲
  • 约翰·迈克尔斯约翰·迈克尔·辛吉斯(英语:John Michael Higgins,1963年2月12日-)是美国的一位演员,出生在波士顿。他出演过《离婚快乐(英语:Happily Divorced)》等电视剧。
  • 汪敬熙汪敬熙(英语:Ging-Hsi Wang,1893年7月7日-1968年6月30日),字缉斋,生理心理学家,山东省历城县人。1919年毕业于北京大学,1923年获美国约翰霍普金斯大学哲学博士学位。1924年回国后曾
  • 四大自由 (罗斯福)四大自由(英语:The Four Freedoms)是美国总统富兰克林·德拉诺·罗斯福于1941年1月6日星期一阐明的目标。在“四大自由演讲”(准确而言是1941年国情咨文演讲)中,他提出了“世界各
  • 周学铭周学铭(1859年-1911年),宇味西,安徽建德人,重臣周馥次子。清朝政治人物、进士出身。光绪十八年(1892年)于其兄周学海中同榜进士,同年五月,改翰林院庶吉士。光绪二十年四月,散馆,著以知县
  • 高崇高崇(1421年-?),字惟志,山东兖州府金乡县人,民籍。明朝政治人物。进士出身。山东乡试第二十一名。正统十三年(1448年),参加戊辰科会试,得贡士一百三十二名。殿试登进士第三甲第一名,除户