混合系统

✍ dations ◷ 2025-04-04 22:43:45 #系统理论,微分方程,控制理论,动力系统

混合系统(hybrid system)是同时包括连续及离散动态特性的动力系统,这类系统中同时有“流”(flow,以微分方程描述)以及跳跃(以有限状态机或自动机理论描述)的特性。有时也会用混合动态系统(hybrid dynamical system)这个词语,比较不会和结合人工神经网络及模糊逻辑的系统,或是同时应用电子及机械的系统混唏。混合系统的好处是其结构可以包括更多种类的系统,在针对系统特性建模时也有更大的弹性。

一般而言,混合系统的状态可以用连续变数的值以及其他离散的模式来表示。状态可能依照其“流条件”(flow condition)有连续性的变化,或依照控制图(control graph)有离散的变化。只要所谓的不变量维持不变,就会有连续性的变化,不过若满足了特定的跳跃条件,就会有离散转态。离散转态也可能和事件有关。

混合系统可以用来为许多系统进行建模,包括有碰撞的物理系统、逻辑动态控制器,甚至是互联网拥堵问题等。

弹跳球(英语:bouncing ball)属于有碰撞的物理系统,混合系统中的经典范例。在此例中,球(以点状质量表示)由启始高度掉到地面弹跳,每一次的弹跳都会耗散能量。球在每一次弹跳之间都是连续的动态特性,当球碰到地面时,因为非弹性碰撞,球的速度会有离散的变化。弹跳球的数学模型如下:令 x 1 {\displaystyle x_{1}} 是球的高度, x 2 {\displaystyle x_{2}} 是球的速度,其混合系统如下:

x C = { x 1 > 0 } {\displaystyle x\in C=\{x_{1}>0\}} ,“流”的统御方程为 x 1 ˙ = x 2 , x 2 ˙ = g {\displaystyle {\dot {x_{1}}}=x_{2},{\dot {x_{2}}}=-g} ,其中 g {\displaystyle g} 为因为重力而有的加速度,上述方程指出,若球在地面之上,最终会因为重力而掉到地面。

x D = { x 1 = 0 } {\displaystyle x\in D=\{x_{1}=0\}} ,“跳跃”的统御方程为 x 1 + = x 1 , x 2 + = γ x 2 {\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} ,其中 0 < γ < 1 {\displaystyle 0<\gamma <1} 为耗散系数。方程式是当高度为零(和地面碰撞)时,其速度符号会相反,且会以 γ {\displaystyle \gamma } 的比例减少。这也是非弹性碰撞的特性。

弹跳球系统的特点是有Zeno行为。Zeno行为有严格的数学定义,可以大致描述为系统在有限时间内进行了无限次的“跳跃”。在此例中,弹跳球每次碰到地面,就会损失能量,因此之后碰到地面的时间间隔也就会越来越接近。

有关混合系统的形式验证,有些方法可以自动证明一些混合系统的特性,验证混合系统安全性的常用工具包括可到达集的计算、抽象模型检查(英语:Abstraction model checking)以及barrier certificate(英语:barrier certificate)。

大部分的验证工作都是不可判定问题,因此没有办法找出通用的验证算法。不过,这些工具会在指标性问题上展现其分析能力。这些可以验证所有强健案例的混合系统验证法带来一个可能的理论性结论:混合系统中的许多问题虽然是不可判定的,但至少是准可判定的。

基本的混合系统建模方式可以分为两种:隐式以及显式。显式的方式会用混合自动机(英语:hybrid automaton)、混合程式或是混合Petri网表示。隐式的作法会用统御方程式来表示,因此会得到微分代数方程(英语:differential algebraic equation)(DAE)的系统,也有可以透过混合键结图来表示。

若是考虑混合系统分析的统一仿真方法,有一种以DEVS(英语:DEVS)形式化为基础的方法,其中微分方程的积分子会量化为原子性的DEVS模型。该方法以离散事件系统的行为产生系统的轨迹,和离散时间系统不同。在参考资料、及中有描述该作法的细节,而软件工具PowerDEVS(英语:PowerDEVS)中也有描述。

相关

  • 喉前庭喉前庭(laryngeal vestibule)即是声带上方的喉腔部分;其基部或前壁呈现出三角形宽广之形状,而其中心部即会厌结节(楔形结节(英语:cuneiform tubercle);小角结节(英语:corniculate tuber
  • 姜(学名:Zingiber officinale),原产地尚不明确,开有黄绿色花并有刺激性香味的根茎。根茎鲜品或干品可以作为调味品。姜经过泡制作为中药药材之一,也可以冲泡为草本茶。姜汁亦可用
  • 墓志铭墓志铭为文体名,在坟墓中或坟墓上,以死者生平事迹所写的一份简介,尤其对于伟大或值得纪念的人其墓经常有墓志铭,在中国和西方都有这种习俗的存在,另外中国古代还有祭文、行状的写
  • 甲酰基.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 英吉利海峡隧道英法海底隧道(英语:Channel Tunnel,亦称 Chunnel;法语:le tunnel sous la Manche,拉芒什海峡隧道)是一座50.5千米长的海底铁路隧道,位于英吉利海峡多佛尔水道下,连接英国的福克斯通和
  • 阿林娜·卡巴耶娃阿林娜·卡巴耶娃(鞑靼语:Älinä Marat qızı Qabayeva,俄语:Алина Маратовна Кабаева,转写:Alina Maratovna Kabaeva,1983年5月12日-),生于乌兹别克斯坦塔什
  • 韦尔贾泰韦尔贾泰(意大利语:Vergiate),是意大利瓦雷泽省的一个市镇。总面积21.61平方公里,人口8961人,人口密度414.7人/平方公里(2009年)。国家统计(ISTAT)代码为012138。
  • 陪胪陪胪(梵语:भैरव,Bhairava,字面意思为可畏或恐怖),也译为倍胪、陪缚罗,较接近梵文的汉音为排哈瓦,印度教神明,外型凶猛,相传是湿婆神的化身,或是他的儿子。在印度教中,他有许多别名,例
  • 恩纳斯托·切萨罗恩纳斯托·切萨罗(Ernesto Cesàro,1859年3月12日-1906年9月12日),意大利数学家,出生于那不勒斯。切萨罗的贡献主要集中在微分几何方面,因为在发散级数领域提出切萨罗平均和切萨罗
  • 蝙蝠侠与罗宾 (系列电影)蝙蝠侠与罗宾 (系列电影),是哥伦比亚电影公司在1949年发行的15部电影,为1943年版蝙蝠侠的续集,演员与前作不同。罗伯特·洛厄里扮演蝙蝠侠,而约翰尼·邓肯扮演罗宾,简·亚当斯扮