混合系统

✍ dations ◷ 2025-11-22 22:03:49 #系统理论,微分方程,控制理论,动力系统

混合系统(hybrid system)是同时包括连续及离散动态特性的动力系统,这类系统中同时有“流”(flow,以微分方程描述)以及跳跃(以有限状态机或自动机理论描述)的特性。有时也会用混合动态系统(hybrid dynamical system)这个词语,比较不会和结合人工神经网络及模糊逻辑的系统,或是同时应用电子及机械的系统混唏。混合系统的好处是其结构可以包括更多种类的系统,在针对系统特性建模时也有更大的弹性。

一般而言,混合系统的状态可以用连续变数的值以及其他离散的模式来表示。状态可能依照其“流条件”(flow condition)有连续性的变化,或依照控制图(control graph)有离散的变化。只要所谓的不变量维持不变,就会有连续性的变化,不过若满足了特定的跳跃条件,就会有离散转态。离散转态也可能和事件有关。

混合系统可以用来为许多系统进行建模,包括有碰撞的物理系统、逻辑动态控制器,甚至是互联网拥堵问题等。

弹跳球(英语:bouncing ball)属于有碰撞的物理系统,混合系统中的经典范例。在此例中,球(以点状质量表示)由启始高度掉到地面弹跳,每一次的弹跳都会耗散能量。球在每一次弹跳之间都是连续的动态特性,当球碰到地面时,因为非弹性碰撞,球的速度会有离散的变化。弹跳球的数学模型如下:令 x 1 {\displaystyle x_{1}} 是球的高度, x 2 {\displaystyle x_{2}} 是球的速度,其混合系统如下:

x C = { x 1 > 0 } {\displaystyle x\in C=\{x_{1}>0\}} ,“流”的统御方程为 x 1 ˙ = x 2 , x 2 ˙ = g {\displaystyle {\dot {x_{1}}}=x_{2},{\dot {x_{2}}}=-g} ,其中 g {\displaystyle g} 为因为重力而有的加速度,上述方程指出,若球在地面之上,最终会因为重力而掉到地面。

x D = { x 1 = 0 } {\displaystyle x\in D=\{x_{1}=0\}} ,“跳跃”的统御方程为 x 1 + = x 1 , x 2 + = γ x 2 {\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} ,其中 0 < γ < 1 {\displaystyle 0<\gamma <1} 为耗散系数。方程式是当高度为零(和地面碰撞)时,其速度符号会相反,且会以 γ {\displaystyle \gamma } 的比例减少。这也是非弹性碰撞的特性。

弹跳球系统的特点是有Zeno行为。Zeno行为有严格的数学定义,可以大致描述为系统在有限时间内进行了无限次的“跳跃”。在此例中,弹跳球每次碰到地面,就会损失能量,因此之后碰到地面的时间间隔也就会越来越接近。

有关混合系统的形式验证,有些方法可以自动证明一些混合系统的特性,验证混合系统安全性的常用工具包括可到达集的计算、抽象模型检查(英语:Abstraction model checking)以及barrier certificate(英语:barrier certificate)。

大部分的验证工作都是不可判定问题,因此没有办法找出通用的验证算法。不过,这些工具会在指标性问题上展现其分析能力。这些可以验证所有强健案例的混合系统验证法带来一个可能的理论性结论:混合系统中的许多问题虽然是不可判定的,但至少是准可判定的。

基本的混合系统建模方式可以分为两种:隐式以及显式。显式的方式会用混合自动机(英语:hybrid automaton)、混合程式或是混合Petri网表示。隐式的作法会用统御方程式来表示,因此会得到微分代数方程(英语:differential algebraic equation)(DAE)的系统,也有可以透过混合键结图来表示。

若是考虑混合系统分析的统一仿真方法,有一种以DEVS(英语:DEVS)形式化为基础的方法,其中微分方程的积分子会量化为原子性的DEVS模型。该方法以离散事件系统的行为产生系统的轨迹,和离散时间系统不同。在参考资料、及中有描述该作法的细节,而软件工具PowerDEVS(英语:PowerDEVS)中也有描述。

相关

  • 管制药品管制药物、管制药品、管制药(英语:Controlled medication、Controlled drugs)指的是一些受到特别法律(例如英国的《1971年滥用药物法(英语:Misuse of Drugs Act 1971)》、美国的《
  • 天球赤道天球赤道是在天球上的一个大圆,它与地球的赤道是同一个平面。换言之,天球赤道是地球赤道在天球上的投影。相同的结果是地球的轨道倾角,使天球的赤道相对于黄道平面倾斜约23.5°
  • 史都华·哈默洛夫史都华·哈默洛夫(Stuart Hameroff ,1952年7月16日),美国亚利桑那大学麻醉学系与心理学系教授、意识研究中心主任教授。
  • 麦当娜麦当娜·路易丝·西科尼(英语:Madonna Louise Ciccone,1958年8月16日-),是一名美国歌手、词曲作家、演员和企业家。出生于美国密歇根州贝城,她跳脱主流流行音乐歌词内容和音乐录影
  • 抱卵亚目见内文抱卵亚目(学名:Pleocyemata),又称腹胚亚目,是甲壳亚门十足目中的一个亚目,它是1963年由马丁·布尔肯罗德(Martin Burkenroad)提出的。通过引入抱卵亚目,布尔肯罗德使用单系群的
  • 中国神话人物列表本列表是介绍关于中国神话的神祇和神仙等。源自中国上古创世神话和传说的神祇:源自道教基础信仰的神祇:源自道教传说中的神仙:被神化的先秦人物:道教各道派的祖师:源自民间的万物
  • 全同粒子在量子力学里,全同粒子是一群不可区分的粒子。全同粒子包括基本粒子,像电子、光子,也包括合成的粒子,像原子、分子。全同粒子可以分为两种类型:有两种方法可以用来区分粒子。第一
  • 特征多项式在线性代数中,对一个线性自同态(取定基即等价于方阵)可定义其特征多项式,此多项式包含该自同态的一些重要性质,例如行列式、迹数及特征值。设 F
  • 卢基乌斯·埃米利乌斯·保卢斯 (前219年执政官)卢基乌斯·埃米利乌斯·保卢斯(Lucius Aemilius Paullus,卒于前216年)古罗马国务活动家和统帅,曾于前219年和前216年两次担任执政官。卢基乌斯·埃米利乌斯·保卢斯是古罗马贵族
  • 焦勖焦勖(焦勗,?-?),明末火器理论家,南直隶宁国(今安徽贵池)人。曾将传教士汤若望口授的欧洲火器科学技术,辑成《火攻挈要》,于崇祯十六年(1643年)刊印。著有《火攻挈要》一书,国家图书馆藏有原