混合系统

✍ dations ◷ 2025-07-11 16:36:06 #系统理论,微分方程,控制理论,动力系统

混合系统(hybrid system)是同时包括连续及离散动态特性的动力系统,这类系统中同时有“流”(flow,以微分方程描述)以及跳跃(以有限状态机或自动机理论描述)的特性。有时也会用混合动态系统(hybrid dynamical system)这个词语,比较不会和结合人工神经网络及模糊逻辑的系统,或是同时应用电子及机械的系统混唏。混合系统的好处是其结构可以包括更多种类的系统,在针对系统特性建模时也有更大的弹性。

一般而言,混合系统的状态可以用连续变数的值以及其他离散的模式来表示。状态可能依照其“流条件”(flow condition)有连续性的变化,或依照控制图(control graph)有离散的变化。只要所谓的不变量维持不变,就会有连续性的变化,不过若满足了特定的跳跃条件,就会有离散转态。离散转态也可能和事件有关。

混合系统可以用来为许多系统进行建模,包括有碰撞的物理系统、逻辑动态控制器,甚至是互联网拥堵问题等。

弹跳球(英语:bouncing ball)属于有碰撞的物理系统,混合系统中的经典范例。在此例中,球(以点状质量表示)由启始高度掉到地面弹跳,每一次的弹跳都会耗散能量。球在每一次弹跳之间都是连续的动态特性,当球碰到地面时,因为非弹性碰撞,球的速度会有离散的变化。弹跳球的数学模型如下:令 x 1 {\displaystyle x_{1}} 是球的高度, x 2 {\displaystyle x_{2}} 是球的速度,其混合系统如下:

x C = { x 1 > 0 } {\displaystyle x\in C=\{x_{1}>0\}} ,“流”的统御方程为 x 1 ˙ = x 2 , x 2 ˙ = g {\displaystyle {\dot {x_{1}}}=x_{2},{\dot {x_{2}}}=-g} ,其中 g {\displaystyle g} 为因为重力而有的加速度,上述方程指出,若球在地面之上,最终会因为重力而掉到地面。

x D = { x 1 = 0 } {\displaystyle x\in D=\{x_{1}=0\}} ,“跳跃”的统御方程为 x 1 + = x 1 , x 2 + = γ x 2 {\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} ,其中 0 < γ < 1 {\displaystyle 0<\gamma <1} 为耗散系数。方程式是当高度为零(和地面碰撞)时,其速度符号会相反,且会以 γ {\displaystyle \gamma } 的比例减少。这也是非弹性碰撞的特性。

弹跳球系统的特点是有Zeno行为。Zeno行为有严格的数学定义,可以大致描述为系统在有限时间内进行了无限次的“跳跃”。在此例中,弹跳球每次碰到地面,就会损失能量,因此之后碰到地面的时间间隔也就会越来越接近。

有关混合系统的形式验证,有些方法可以自动证明一些混合系统的特性,验证混合系统安全性的常用工具包括可到达集的计算、抽象模型检查(英语:Abstraction model checking)以及barrier certificate(英语:barrier certificate)。

大部分的验证工作都是不可判定问题,因此没有办法找出通用的验证算法。不过,这些工具会在指标性问题上展现其分析能力。这些可以验证所有强健案例的混合系统验证法带来一个可能的理论性结论:混合系统中的许多问题虽然是不可判定的,但至少是准可判定的。

基本的混合系统建模方式可以分为两种:隐式以及显式。显式的方式会用混合自动机(英语:hybrid automaton)、混合程式或是混合Petri网表示。隐式的作法会用统御方程式来表示,因此会得到微分代数方程(英语:differential algebraic equation)(DAE)的系统,也有可以透过混合键结图来表示。

若是考虑混合系统分析的统一仿真方法,有一种以DEVS(英语:DEVS)形式化为基础的方法,其中微分方程的积分子会量化为原子性的DEVS模型。该方法以离散事件系统的行为产生系统的轨迹,和离散时间系统不同。在参考资料、及中有描述该作法的细节,而软件工具PowerDEVS(英语:PowerDEVS)中也有描述。

相关

  • 霉草科参见正文霉草科共包括8属约48种,广泛分布在全球热带和亚热带区域,包括东南亚、中南美洲、非洲、马达加斯加岛北部和澳大利亚东北,中国只有喜荫草属(Sciaphila)1属3种,分布在海南和
  • 材料材料是人类可以利用制作有用构件、器件或物品的物质。材料的发展标志着社会的进步,比如石器的广泛使用是“石器时代”,相似的还有“青铜时代”和“铁器时代”等等。材料和资讯
  • 中华民国宪兵中华民国宪兵(英语:Republic of China Military Police,缩写:ROCMP),为中华民国国军中具有军法、司法警察权力的执法部队,军种属中华民国陆军。因具有执法权,并拥有独立的指挥、人事
  • 褐獴褐獴(学名 Herpestes fuscus) 是产于印度的一种獴。褐獴包括以下亚种
  • ICD-10 第二十二章:特殊目的代码ICD-10 第二十二章:特殊目的代码,即国际疾病与相关健康问题统计分类第十版最后一个代码分类。是WHO特别设立、为一些因临时突发性疾病及事件余留的代码区域,以便于对突发事件进
  • 2019冠状病毒病塞拉利昂疫情2019冠状病毒病塞拉利昂疫情,介绍在2019新型冠状病毒疫情中,在塞拉利昂发生的情况。2020年3月31日,2019冠状病毒病疫情扩散至塞拉利昂。2020年3月31日,总统朱利叶斯·马达·比奥
  • 天秀路天秀路(英语:Tin Sau Road),位于天水围新市镇北部103区及108区,东面连接天葵路,西面连接天影路,是一条东西行双向道路。此路前称L13路,根据未命名道路编号定义,属于地区干路。天秀路
  • 滇虹药业滇虹药业集团股份有限公司,简称滇虹药业集团股份、滇虹药业集团,以及滇虹药业(英语:DIHON PHARMACEUTICAL GROUP CO., LTD.),于1993年由美国大东企业公司设立当时名为“昆明滇虹药
  • 马克·潘马克·潘(Mark Prin Suparat,1990年3月19日-),是泰国的演员,在当演员之前,他曾是名柔道运动员。目前,他已接拍过泰国第3电视台的剧目。马克是喃邦府人。他有两个兄弟姐妹,而他是家里
  • 国际母乳喂养标志国际母乳喂养标志是由绘图设计家(英语:Graphic designer)Matt Daigle所提出的,他也有小孩。他是为了美国妈妈杂志(英语:Mothering (magazine))发起的竞赛而设计此图案。此作品是在2