混合系统

✍ dations ◷ 2025-06-08 19:30:42 #系统理论,微分方程,控制理论,动力系统

混合系统(hybrid system)是同时包括连续及离散动态特性的动力系统,这类系统中同时有“流”(flow,以微分方程描述)以及跳跃(以有限状态机或自动机理论描述)的特性。有时也会用混合动态系统(hybrid dynamical system)这个词语,比较不会和结合人工神经网络及模糊逻辑的系统,或是同时应用电子及机械的系统混唏。混合系统的好处是其结构可以包括更多种类的系统,在针对系统特性建模时也有更大的弹性。

一般而言,混合系统的状态可以用连续变数的值以及其他离散的模式来表示。状态可能依照其“流条件”(flow condition)有连续性的变化,或依照控制图(control graph)有离散的变化。只要所谓的不变量维持不变,就会有连续性的变化,不过若满足了特定的跳跃条件,就会有离散转态。离散转态也可能和事件有关。

混合系统可以用来为许多系统进行建模,包括有碰撞的物理系统、逻辑动态控制器,甚至是互联网拥堵问题等。

弹跳球(英语:bouncing ball)属于有碰撞的物理系统,混合系统中的经典范例。在此例中,球(以点状质量表示)由启始高度掉到地面弹跳,每一次的弹跳都会耗散能量。球在每一次弹跳之间都是连续的动态特性,当球碰到地面时,因为非弹性碰撞,球的速度会有离散的变化。弹跳球的数学模型如下:令 x 1 {\displaystyle x_{1}} 是球的高度, x 2 {\displaystyle x_{2}} 是球的速度,其混合系统如下:

x C = { x 1 > 0 } {\displaystyle x\in C=\{x_{1}>0\}} ,“流”的统御方程为 x 1 ˙ = x 2 , x 2 ˙ = g {\displaystyle {\dot {x_{1}}}=x_{2},{\dot {x_{2}}}=-g} ,其中 g {\displaystyle g} 为因为重力而有的加速度,上述方程指出,若球在地面之上,最终会因为重力而掉到地面。

x D = { x 1 = 0 } {\displaystyle x\in D=\{x_{1}=0\}} ,“跳跃”的统御方程为 x 1 + = x 1 , x 2 + = γ x 2 {\displaystyle x_{1}^{+}=x_{1},x_{2}^{+}=-\gamma x_{2}} ,其中 0 < γ < 1 {\displaystyle 0<\gamma <1} 为耗散系数。方程式是当高度为零(和地面碰撞)时,其速度符号会相反,且会以 γ {\displaystyle \gamma } 的比例减少。这也是非弹性碰撞的特性。

弹跳球系统的特点是有Zeno行为。Zeno行为有严格的数学定义,可以大致描述为系统在有限时间内进行了无限次的“跳跃”。在此例中,弹跳球每次碰到地面,就会损失能量,因此之后碰到地面的时间间隔也就会越来越接近。

有关混合系统的形式验证,有些方法可以自动证明一些混合系统的特性,验证混合系统安全性的常用工具包括可到达集的计算、抽象模型检查(英语:Abstraction model checking)以及barrier certificate(英语:barrier certificate)。

大部分的验证工作都是不可判定问题,因此没有办法找出通用的验证算法。不过,这些工具会在指标性问题上展现其分析能力。这些可以验证所有强健案例的混合系统验证法带来一个可能的理论性结论:混合系统中的许多问题虽然是不可判定的,但至少是准可判定的。

基本的混合系统建模方式可以分为两种:隐式以及显式。显式的方式会用混合自动机(英语:hybrid automaton)、混合程式或是混合Petri网表示。隐式的作法会用统御方程式来表示,因此会得到微分代数方程(英语:differential algebraic equation)(DAE)的系统,也有可以透过混合键结图来表示。

若是考虑混合系统分析的统一仿真方法,有一种以DEVS(英语:DEVS)形式化为基础的方法,其中微分方程的积分子会量化为原子性的DEVS模型。该方法以离散事件系统的行为产生系统的轨迹,和离散时间系统不同。在参考资料、及中有描述该作法的细节,而软件工具PowerDEVS(英语:PowerDEVS)中也有描述。

相关

  • 卑尔根大学坐标:60°23′17″N 05°19′22″E / 60.38806°N 5.32278°E / 60.38806; 5.32278卑尔根大学(挪威语:Universitetet i Bergen)是挪威的一所综合性大学,位于挪威第二大城市以及文
  • 艺术创作硕士艺术创作硕士(英语:Master of Fine Arts,简写MFA)是一项在艺术领域的硕士学位,通常需要两到三年的时间才能修读完毕。课程上多以艺术创作、进阶运用(包括各种研究与学科范畴),并以一
  • 太白山坐标:38°13′29″N 128°11′7″E / 38.22472°N 128.18528°E / 38.22472; 128.18528太白山脉(谚:태백산맥)为韩国和朝鲜两国之主要山脉,纵贯朝鲜半岛东部,为半岛之主体骨干,东侧
  • 乞力马扎罗山乞力马扎罗山(斯瓦希里语:Kilimanjaro,发音: /ˌkɪlɪmənˈdʒɑːroʊ/,意为“灿烂发光的山”)位于坦桑尼亚东北的乞力马扎罗区,临近肯尼亚边界,是非洲的最高山,常被称为“非洲屋
  • 台语泰语支(又称傣语支、台语支、壮傣语支、壮泰语支、壮台语支)是壮侗语系侗台语族中的一个语支,即汉藏语系传统分类中壮侗语族壮傣语支的语言。包括壮语、布依语、傣语(在中国境内
  • 1999年亚洲女子手球锦标赛1999年亚洲女子手球锦标赛为第7届亚洲女子手球锦标赛,是一项亚洲区内的国际性女子手球赛事。本届赛事于1999年5月6日-8日在日本熊本县熊本市举行。本赛事亦同时作为翌年在澳
  • 王上豪王上豪(1989年8月13日-),是台湾男艺人、游戏实况主。曾是凤凰艺能旗下艺人。2017CTC世界国标舞竞赛艺人组 第四名
  • JohnnyJohnny是一个英语人名,可以指:
  • 默剧默剧(英语:Mime artist),模仿剧的意思。法国现代默剧(Modern Mime)大师Etienne Decroux 定义默剧为“静默的艺术(the Art of Silent) ”。 默剧是界乎舞蹈与戏剧之间的一种表演艺术
  • 布赖斯·德威特布赖斯·塞利格曼·德威特(英语:Bryce Seligman DeWitt,1923年1月8日-2004年9月23日),美国理论物理学家。他对广义相对论的量子化作出了奠基性的工作。