首页 >
驻波
✍ dations ◷ 2025-11-25 04:55:52 #驻波
驻波(英语:standing wave或stationary wave)为两个波长、周期、频率和波速皆相同的正弦波相向行进干涉而成的合成波。与行波不同,驻波的波形无法前进,因此无法传播能量,故名之。驻波通过时,每一个质点皆作简谐运动。各质点振荡的幅度不相等,振幅为零的点称为节点或波节(英语:Node),振幅最大的点位于两节点之间,称为腹点或波腹(英语:Antinode)。由于节点静止不动,所以波形没有传播。能量以动能和势能的形式交换储存,亦传播不出去。两列传播方向相反的相干波相遇而产生干涉,或介质沿波速的相反方向运动时,均可产生这个现象。常见的驻波现象是谐振器中,一列波与自身的反射波产生干涉而形成的。1860年,弗朗兹·麦尔德(英语:Franz Melde)首次发现,并创造了“驻波”(德语:stehende Welle或Stehwelle)一词。介质中的驻波。红点代表波节。驻波(黑线)是两列反向传播的波(红线和蓝线)的叠加。电场(E)与磁场(H)的驻波。弦线中的驻波:基音和第一至五泛音。二维驻波。圆盘上两节线的交叉处中心的高次谐波驻波。同一介质中,两列传播方向相反,而振幅、频率都相同的波相遇时,即形成驻波。其结果是在一系列固定的位置产生波腹(即振动加强点)和波节(即振动减弱点)。一列波与自身的反射波很容易形成驻波。实际情况中,振荡过程中的损耗和其他导致能量损失的因素使得完美的驻波很难实现。其结果是形成驻波和行波的叠加。这种波中纯驻波和纯行波的比例可以用驻波比(英语:standing wave ratio)(SWR)来描述。沿相反方向传播的波可以用以下方程表示:以及其中两列波叠加后的结果为:简化后得到:由以上方程可知,在坐标为
0
{displaystyle 0}
、
λ
2
{displaystyle {frac {lambda }{2}}}
、
λ
{displaystyle lambda }
、
3
λ
2
{displaystyle {frac {3lambda }{2}}}
、……的位置,振幅始终为0,即为波节。在
λ
4
{displaystyle {frac {lambda }{4}}}
、
3
λ
4
{displaystyle {frac {3lambda }{4}}}
、
5
λ
4
{displaystyle {frac {5lambda }{4}}}
……处,振幅最大,即为波腹。最近的波节和波腹之间相距
λ
4
{displaystyle {frac {lambda }{4}}}
。在二维或三位的振动体系中,亦可以产生驻波。在二维面上的驻波中,固定的波节变为波节线,将振动相位相反的区域隔开(如上图动画)。这种由波节线组成的图形称为克拉尼图形。对于两端固定的弦线,求解其上的横振动相当于求解波动方程在给定边界条件和适当初始条件下的解。通过分离变量法可以将此初值问题转化为本征值问题,并求得不同本征值对应的特解:每个特解都对应弦线上以两个端点为波节的一列驻波,对应的波长和频率分别为:即弦线长度为半波长的整数倍。其中最小的本征值对应波长最长,频率最低的振动,该频率被称为基频。其余的振动频率都是基频的整数倍,在音乐中这些振动被称为泛音。通过谐振,驻波很容易在固体介质中产生。当两个人各持绳子的一端,同步上下摇动时,绳子会形成固定的驻波图样。相似的情况还有当一端固定悬臂梁受到一定频率的激发时,也能产生驻波,这时悬臂的自由端的振幅最大。这样的设备可以用来追踪物体自然频率或相位的变化。这一特点亦可用于长度的测量。驻波也常在弦线和空气柱这样的介质中被观测到。沿介质传播的波遇到障碍后会反射,并于自身产生干涉,形成驻波。乐器中这一现象极为常见。声音频率是弦线或空气中的自然频率的倍数时,产生驻波,谐波的频率也就因此得以确定。波节在固定端,波腹在开放的自由端。在光的传播中,也能观察到驻波。在共振腔等器材中,驻波常常发生。激光共振腔的一种——法布里-珀罗干涉仪使用两个平行的平面反射镜使激光产生共振。共振腔中的增益介质将光连续射出,在共振腔内部激发出驻波。使用光学测平器(英语:Optical_flat),就是利用光的驻波来测量微小的距离。X射线之间的干涉可以形成X射线驻波场(英语:X-Ray Standing Wave field)。由于X射线波长为0.1纳米至10纳米,处于原子尺度,因此可以利用X射线的驻波来测量这一尺度下的长度。X射线驻波在X射线与由近乎完美的单晶表面衍射而来或X射线反射面反射而来的射线发生干涉的区域产生。通过调整晶体几何或X射线波长,X射线驻波可以在空间中传播。这一效应可运用于X射线荧光光谱仪中,将原子的内层电子打出。X射线驻波法也被用在查明半导体中原子掺杂的具体情况,原子和分子的表面吸附情况,以及催化作用中的化学变化。浅源地震引起的表面波以地球的自由振荡的形式被观测到。法拉第波是在气液分界面上,由于流体不稳定性产生的一种非线性驻波,可用于液基微小物体聚集器。
相关
- 肝脏肝脏(英语:liver)为脊椎动物体内的一种器官,以代谢功能为主,并扮演着除去毒素,储存糖原(肝糖),分泌蛋白质合成等重要角色。肝脏也会制造胆汁。在医学用字上,常以拉丁语字首hepato-或he
- 丙氨酸丙氨酸(Alanine,简写为Ala或A)是一种氨基酸,于1879年首度被分离出来。它含有胺基和羧酸,二者都与中心碳原子相连,中心碳原子也带有甲基侧链。因此,它的IUPAC系统命名为2-氨基丙酸,并
- 提比里亚提比里亚或太巴列(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova"
- 约瑟夫·诺曼·洛克耶约瑟夫·诺曼·洛克耶(英语:Joseph Norman Lockyer 1836年5月17日-1920年8月16日)英国科学家、天文学家,与法国科学家皮埃尔·让森一同发现了氦气。科学期刊《自然》创始人和首
- 汪尔康汪尔康(1933年5月4日-),中国分析化学家。1933年生于江苏镇江。1952年毕业于沪江大学化学系。1959年获捷克斯洛伐克科学院副博士学位。1993年当选为第三世界科学院院士。中国科学
- 专利流氓专利流氓又称专利蟑螂(英语:Patent Troll),用于形容一些积极发动专利侵权诉讼以获取赔偿,却从没生产其专利产品的个人或公司。至2008年为止美国是全世界专利纠纷最多的国家之一,其
- 农业部长美国农业部(英语:United States Department of Agriculture,缩写:USDA),是美国联邦政府的一个行政部门,该部通过对农业生产的支持,提高美国人民的生活质量。农业部前身是1862年5月15
- 加拿大节日加拿大节日,包括国家法定节日和各省以及地方自己的法定节日,许多节日为全国人民所庆祝。加拿大法定节日主要为基督教节日,例如圣诞节、基督受难日等,但也接纳了许多其他宗教的节
- 马拉提语马拉地语(मराठी Marāṭhī、Marathi language) 是印度的22种规定语言之一,在马哈拉施特拉邦大约有 9 千万使用者。马拉地语有悠久的历史,据报可在8世纪的碑文中找到。马拉
- 抽象表现主义抽象表现主义(Abstract Expressionism)或称纽约画派。是第二次世界大战以后之后盛行二十年、以纽约为中心的艺术运动,是受世界瞩目的美国艺术,一般被认为是一种透过形状和颜色以
