卢卡斯-莱默检验法

✍ dations ◷ 2025-04-02 16:28:07 #素性测试

数学中,卢卡斯-莱默检验法(英语:Lucas–Lehmer primality test)是检验梅森数的素性检验,是由爱德华·卢卡斯于1878年完善,德里克·亨利·莱默随后于1930年代将其改进。

因特网梅森素数大搜索用这个检验法找到了不少很大的素数,最近几个最大的素数就是这个项目发现的。由于梅森数比随机选择的整数更有可能是素数,因此他们认为这是一个极有用的方法。

卢卡斯-莱默检验法原理是这样:
令梅森数 = 2− 1作为检验对象(预设是素数,否则就是合数了)。

定义序列{ }:所有的 ≥ 0

这个序列的开始几项是4, 14, 194, 37634, ... (OEIS中的数列A003010)

那么是素数当且仅当

否则, 是合数。
− 2的余数叫做的卢卡斯-莱默余数。

假设我们想验证M3 = 7是素数。我们从=4开始,并更新3−2 = 1次,把所有的得数模7:

由于我们最终得到了一个能被7整除的,因此M3是素数。

另一方面,M11 = 2047 = 23×89就不是素数。我们仍然从=4开始,并更新11−2 = 9次,把所有的得数模2047:

由于最终仍未能被2047整除,因此M11=2047不是素数。但是,我们从这个检验法仍然无法知道2047的因子,只知道它的卢卡斯-莱默余数1736。

我们注意到 s i {\displaystyle {\langle }s_{i}{\rangle }} ,都有 s i = ω 2 i + ω ¯ 2 i {\displaystyle s_{i}=\omega ^{2^{i}}+{\bar {\omega }}^{2^{i}}} ,有 ω 2 p 2 + ω ¯ 2 p 2 = k M p {\displaystyle \omega ^{2^{p-2}}+{\bar {\omega }}^{2^{p-2}}=kM_{p}} 是合数,其非平凡素因子 > 2(所有梅森素数都是奇数)。定义含有2个元素的集合 X = { a + b 3 | a , b Z q } {\displaystyle X=\{a+b{\sqrt {3}}|a,b\in \mathbb {Z} _{q}\}} 的整数,是一个有限域。中的乘法运算定义为:

由于 > 2,因此 ω {\displaystyle \omega } 内的数的乘积也一定位于内,但它不是一个群,因为不是所有的元素都有逆元素,使得 = 1。如果我们只考虑有逆元素的元素,我们便得到了一个群*,它的大小最多为 q 2 1 {\displaystyle q^{2}-1} *内,它的目能整除 2 p {\displaystyle 2^{p}} M p {\displaystyle M_{p}} 的二次非剩余,这是因为对于奇数 > 1,2  − 1只取得值7 mod 12,因此从勒让德符号的性质可知 ( 3 | M p ) {\displaystyle (3|M_{p})} *为 { a + b 3 | a , b Z M p } {\displaystyle \{a+b{\sqrt {3}}|a,b\in \mathbb {Z} _{M_{p}}\}} (费马小定理)。

那么,在群*中,我们有:

简单计算可知 ω = ( 6 + σ ) 2 / 24 {\displaystyle \omega =(6+\sigma )^{2}/24} *中的 ω ( M p + 1 ) / 2 {\displaystyle \omega ^{(M_{p}+1)/2}} −2是整数,且在*内是零,因此它也是零mod 

相关

  • 航空航天工程航空航天工程学(aerospace engineering)是航空工程学与航天工程学的总称,涉及航空飞行器与航天飞行器有关的工程领域。它包含固体力学、流体力学(特别是空气动力学)、航天动力学
  • 二重证据法1925年,由王国维提倡,“吾辈生于今日,幸于纸上之材料外,更得地下之新材料。由此种材料,我辈固得据以补正纸上之材料,亦得证明古书之某部分全为实录,即百家不雅训之言亦不无表示一面
  • 理学家四配颜回 · 孟子 · 曾参 · 孔伋日本藤原惺窝 · 林罗山 · 室鸠巢新井白石 · 雨森芳洲朝鲜薛聪 · 权近 · 吉再 · 安珦 · 李穑李滉 · 王仁 · 李齐贤 
  • 姬猪姬猪(学名:Porcula salvania),或称侏儒猪、迷你猪,是一种在印度次大陆生活的小型猪,是猪科动物中最小的一种,曾经遍布印度、尼泊尔和不丹的高湿草原地带。 然而人类的活动已经大大
  • 中山大学深圳校区中山大学深圳校区(简称:中大深圳,英文名:Sun Yat-sen University Shenzhen Campus),是一所位于中国大陆广东省深圳市的科研型综合大学,预计于2019年9月启用,将成为中山大学的主校区
  • 高铮高铮(1920年1月23日-),字百冶,河南永城人,中华民国外交官。高铮自国立政治大学外交系毕业后赴美国留学,获南加州大学外交硕士。进入外交部后,历任实习员、科员、科长,中华民国驻洛杉
  • 戈部戈部,为汉字索引中的部首之一,康熙字典214个部首中的第六十二个(四划的则为第二个)。就繁体和简体中文中,戈部归于四划部首。戈部通常是从下、左方均可为部字。且无其他部首可用
  • 300 (消歧义)300是一个自然数,亦可以代表:在媒体中:在机械中:在游戏中:
  • FN 303非致命性弹药发射器FN 303非致命性弹药发射器(FN 303)是一款由比利时枪械制造商埃斯塔勒国营工厂(荷兰语:Fabrique Nationale de Herstal,简称:FN)所设计和生产的半自动(英语:Semi-automatic firearm)非
  • 倭岛英二倭岛英二(1905年-1982年4月6日),日本外交官,出生于日本本州鸟取县。1928年于东京帝国大学法学部就读期间通过外交官考试,翌年毕业后进入外务省。早期曾被派驻于美国、中国,随后服务