克鲁斯卡尔坐标系

✍ dations ◷ 2025-07-08 08:14:40 #广义相对论,坐标系

克鲁斯卡尔坐标系(或称作克鲁斯卡尔-塞凯赖什坐标系,英文Kruskal coordinates或Kruskal-Szekeres coordinates)是在史瓦西度规下建立的一种坐标系,名称来自于美国数学物理学家马丁·克鲁斯卡尔(Martin Kruskal)和匈牙利-澳大利亚数学家乔治·塞凯赖什。这种坐标系的优点在于它能够涵盖整个时空流形,使得奇点之外的所有点在坐标系中都存在定义,也就是说它能够将原有的在球坐标系下的史瓦西度规最大限度地推广到整个时空中。

考虑在球坐标系下的史瓦西度规

其中

是二维球面 S 2 {\displaystyle S^{2}\,} 的线元。

将时间坐标 t {\displaystyle t\,} 和径向坐标 r {\displaystyle r\,} 做如下代换:

在这些坐标下,史瓦西度规由下式给出:

其中 r {\displaystyle r\,} 的定义被隐含在

或等价于

其中 W {\displaystyle W\,} 是朗伯W函数。

这组由 ( T , R , θ , ϕ ) {\displaystyle \left(T,R,\theta ,\phi \right)\,} 构成的坐标系称作Kruskal坐标系,有时也称作Kruskal-Szekeres坐标系。

史瓦西黑洞的视界位于 r = 2 G M {\displaystyle r=2GM\,} ,此时

的右面为零,从而有

即史瓦西黑洞的视界在T-R平面上是两条45°的对角线。

对于一般的常数 r {\displaystyle r\,} ,可以得到

即它们是T-R平面上的一组双曲线。

对于一般的常数 t {\displaystyle t\,}

它们是通过原点的斜率为 tanh ( t / 4 G M ) {\displaystyle \tanh(t/4GM)\,} 的直线。注意到当 t ± {\displaystyle t\rightarrow \pm \infty \,} tanh ( t / 4 G M ) = ± 1 {\displaystyle \tanh(t/4GM)=\pm 1\,} ,从而等价于 T 2 R 2 = constant {\displaystyle T^{2}-R^{2}={\text{constant}}\,} 的情形。这表明 t = ± {\displaystyle t=\pm \infty \,} r = 2 G M {\displaystyle r=2GM\,} 描述的是同一个面。

如果像上节所述那样将时空图画到T-R平面上就得到了像右面图1所示的Kruskal图。Kruskal图上的每一点都代表了一个二维球面。从图中可以看到:

对于球坐标系下的史瓦西解而言,存在物理意义的径向坐标的范围是 0 < r < {\displaystyle 0<r<\infty \,} ,且 r 2 G M {\displaystyle r\neq 2GM\,} ;但从上节我们已经看到在Kruskal坐标系中,在避免撞上奇点 r = 0 {\displaystyle r=0\,} 的前提下所允许的R的范围是从负无穷大到正无穷大,并且 T 2 R 2 < 1 {\displaystyle T^{2}-R^{2}<1\,} 。在Kruskal图中所描述的史瓦西解被称作最大延伸的史瓦西解(Maximally Extended Schwarzchild Solution),从图3中可以看到它包含有通过视界 r = 2 G M {\displaystyle r=2GM\,} 分割的四个不同的时空:

相关

  • 强酸强酸,是指在水溶液中接近完全电离的酸(硫酸这类多元酸不在此限),或以酸度系数的概念理解,则指pKa值 < −1.74的酸。这个值可以理解为在标准状况下,氢离子的浓度等同于加入强酸后的
  • 导热性热传导,是热能从高温向低温部分转移的过程,是 一个分子向另一个分子传递振动能的结果。各种材料的热传导性能不同,传导性能好的,如金属,还包括了自由电子的移动,所以传热速度快,可
  • 中德协约中德协约于1921年5月20日在北京签订。签订方中华民国政府和德意志共和国政府在一战后为恢复和平建立外交关系,中华民国方面由于拒绝签署凡尔赛和约,遂签订此条约。一战爆发后,
  • 骨迷路内耳(英语:Inner ear)是耳的解剖结构的一部分。内耳处于颞骨空腔中,其最主要的结构是骨迷路,由前庭系统和耳蜗构成。前庭系统是平衡觉的末梢器官,负责对头部的线性加速度和角加速
  • 狂犬病毒属丽沙病毒属(英语:Lyssavirus),又称狂犬病毒属,一种核糖核酸病毒,属于单股反链病毒目炮弹病毒科。它的名称来自希腊神话中的丽沙(Lyssa),主管疯狂、发狂的女神。这个属的病毒中,包括了
  • 辉格派爱国者(或称为美国辉格党,革命党,大陆会议派,反叛者)是美国革命期间英属十三个殖民地的暴力反抗英国统治的殖民者,同时,他们在1776年7月宣布美利坚合众国独立。他们叛乱的缘由是基
  • 中莫诺省坐标:7°01′23″N 1°36′54″E / 7.02306°N 1.61500°E / 7.02306; 1.61500中莫诺省(法语:Préfecture du Moyen-Mono),是多哥的30个省份之一,位于该国中南部,由高原区负责管辖,
  • 不等数学上,不等是表明两个对象的大小或者顺序的二元关系,与相等相对。不等关系主要有四种:上述两个属于严格不等。将两个表达式用不等符号连起来,就构成了不等式。若不等关系对变量
  • 摩西·阿伦斯摩西·阿伦斯(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Ta
  • 狸御殿‘狸御殿’,为木村恵吾的原作“オペレッタ喜剧”的统称。在昭和14年 (1939) 的第1作公开以来,多次重制到现在。