克鲁斯卡尔坐标系

✍ dations ◷ 2025-12-05 09:52:12 #广义相对论,坐标系

克鲁斯卡尔坐标系(或称作克鲁斯卡尔-塞凯赖什坐标系,英文Kruskal coordinates或Kruskal-Szekeres coordinates)是在史瓦西度规下建立的一种坐标系,名称来自于美国数学物理学家马丁·克鲁斯卡尔(Martin Kruskal)和匈牙利-澳大利亚数学家乔治·塞凯赖什。这种坐标系的优点在于它能够涵盖整个时空流形,使得奇点之外的所有点在坐标系中都存在定义,也就是说它能够将原有的在球坐标系下的史瓦西度规最大限度地推广到整个时空中。

考虑在球坐标系下的史瓦西度规

其中

是二维球面 S 2 {\displaystyle S^{2}\,} 的线元。

将时间坐标 t {\displaystyle t\,} 和径向坐标 r {\displaystyle r\,} 做如下代换:

在这些坐标下,史瓦西度规由下式给出:

其中 r {\displaystyle r\,} 的定义被隐含在

或等价于

其中 W {\displaystyle W\,} 是朗伯W函数。

这组由 ( T , R , θ , ϕ ) {\displaystyle \left(T,R,\theta ,\phi \right)\,} 构成的坐标系称作Kruskal坐标系,有时也称作Kruskal-Szekeres坐标系。

史瓦西黑洞的视界位于 r = 2 G M {\displaystyle r=2GM\,} ,此时

的右面为零,从而有

即史瓦西黑洞的视界在T-R平面上是两条45°的对角线。

对于一般的常数 r {\displaystyle r\,} ,可以得到

即它们是T-R平面上的一组双曲线。

对于一般的常数 t {\displaystyle t\,}

它们是通过原点的斜率为 tanh ( t / 4 G M ) {\displaystyle \tanh(t/4GM)\,} 的直线。注意到当 t ± {\displaystyle t\rightarrow \pm \infty \,} tanh ( t / 4 G M ) = ± 1 {\displaystyle \tanh(t/4GM)=\pm 1\,} ,从而等价于 T 2 R 2 = constant {\displaystyle T^{2}-R^{2}={\text{constant}}\,} 的情形。这表明 t = ± {\displaystyle t=\pm \infty \,} r = 2 G M {\displaystyle r=2GM\,} 描述的是同一个面。

如果像上节所述那样将时空图画到T-R平面上就得到了像右面图1所示的Kruskal图。Kruskal图上的每一点都代表了一个二维球面。从图中可以看到:

对于球坐标系下的史瓦西解而言,存在物理意义的径向坐标的范围是 0 < r < {\displaystyle 0<r<\infty \,} ,且 r 2 G M {\displaystyle r\neq 2GM\,} ;但从上节我们已经看到在Kruskal坐标系中,在避免撞上奇点 r = 0 {\displaystyle r=0\,} 的前提下所允许的R的范围是从负无穷大到正无穷大,并且 T 2 R 2 < 1 {\displaystyle T^{2}-R^{2}<1\,} 。在Kruskal图中所描述的史瓦西解被称作最大延伸的史瓦西解(Maximally Extended Schwarzchild Solution),从图3中可以看到它包含有通过视界 r = 2 G M {\displaystyle r=2GM\,} 分割的四个不同的时空:

相关

  • 赫雪尔太空望远镜赫歇尔空间天文台(英语:Herschel Space Observatory)是欧洲空间局的一颗空间天文卫星,已在2009年5月14日和普朗克卫星一起于位于法属圭亚那的空间中心由亚利安五号火箭发射升空,
  • 高等植物有胚植物,又称为高等植物,是那些最熟悉的植物,包括苔藓植物门、地钱纲、角苔纲、蕨类、石松、裸子植物、开花植物等,但不包括绿藻。有胚植物都是具有专门的生殖器官的复杂多细胞
  • Fe(ClOsub4/sub)sub2/sub高氯酸亚铁是一种无机化合物,化学式为Fe(ClO4)2。其六水合物易溶于水,溶解度为98 g(0°C)。高氯酸亚铁易潮解且易氧化,需密封保存。
  • 广播电台电台广播(英语:Radio broadcasting),又称无线电广播、声音广播或收音机广播,是以无线电波单向传递声音信息的方式,一般是以高频广播。电台发送广播频率后,听众透过收音机来接收。依
  • 因果关系 (法律)客体 · 行为(作为 · 不作为) 危害结果 · 因果关系 · 犯罪主体 主观要件(故意 · 过失) 未遂 · 既遂 · 中止 · 预备阻却违法事由 正当防卫 · 紧急避难心神丧失
  • 钱三强钱三强(1913年10月16日-1992年6月28日),原名钱秉穹,浙江湖州人,中国原子核物理学家,中国原子能事业的主要奠基人和组织领导者之一,在中华人民共和国的“两弹一星”工程中作出了重大
  • 期刊引证报告期刊引证报告(Journal Citation Reports,JCR)是由科睿唯安(Clarivate Analytics)所发表的年度出版物(原汤森路透知识产权与科技事业部)。它透过该公司旗下Web of Science(英语:Web of
  • NTSCNTSC制式,又简称为N制,是1952年12月由美国国家电视系统委员会(National Television System Committee,缩写为NTSC)制定的彩色电视广播标准,两大主要分支是NTSC-J(英语:NTSC-J)(日本标
  • 阿兹米·比沙拉阿兹米·比沙拉(阿拉伯语:عزمي بشارة‎;希伯来语:עזמי בשארה‎,1956年7月22日-)是一个拥有以色列公民身份的巴勒斯坦基督徒,1996年至2007年4月期间代表阿拉伯政党
  • 泷川资言泷川龟太郎(1865年-1946年),字资言,号君山。日本岛根县人,出身士族,是世界知名的汉学家,著有《史记会注考证》,是研究司马迁《史记》的经典权威作品。泷川龟太郎是日本战国时期的知名