表面重构

✍ dations ◷ 2025-08-27 19:32:42 #凝聚体物理学,表面化学,材料科学

表面重构(surface reconstruction)指的是晶体表层原子的排布结构与晶体内部原子的排列方式不一致的现象。对表面重构的研究可以帮助理解不同材料表面上的化学特性。表面重构既可以发生在单一化学组分的晶体表面(例如Si(111)7×7表面重构);当另一种材料吸附在晶体表面(例如银原子吸附在Si(111)7×7表面),吸附原子也可以引起新的重构。

理想情况下的晶体向各方向无限延伸,其中任一原子的平衡位置由晶体中其他所有原子对其作用力的总和决定。因此,每个原子所在的位置在理想晶体中是等价的,生成的晶体结构是周期性的。现实情况下的晶体大小有限,这就导致了靠近晶体表层的原子受到的作用力不同于晶体内部的原子,从而造成晶体表面原子排列方式不同于晶体内部的结果。晶体表层原子的这种行为可被分为弛豫(relaxation)和重构(reconstruction)两种情况。

弛豫指表面的原子层整体相对于内部的本体(bulk)的位置变化。较为常见的情况是垂直方向上的上下位移,即法向弛豫(normal relaxation)。大部分金属表面上的弛豫都是这种类型。某些材料的表面也可能在发生法向弛豫的同时有切向的弛豫。

重构指表面原子层上的原子重新排布所导致的表层二维结构的变化。重构可能会改变表面的对称性:例如在Pt(100)表面,重构使得原先的正方形晶格(英语:square lattice)变成六角形晶格(英语:hexagonal lattice)。重构既可以只影响表面的一层原子,也可以影响多层的原子。遵循原子数守恒的重构(即重构前后表面的原子总量不变)被称作“保守重构(conservative reconstruction)”;反之则被称作“非保守重构(non-conservative reconstruction)”。

上述的弛豫和重构只考虑了真空中原子级清洁表面上的理想情况,即不考虑材料表面与其他介质的相互作用。然而,表面上的吸附也可引起或改变表面的重构。

表面重构是否受吸附的影响主要取决于以下几个因素:

吸附物参与重构的一个实际例子是铟原子在Si(111)表面上的吸附。扫描隧道显微镜的图像中可观测到两种不同的重构—— S i ( 111 ) 3 × 3 {\displaystyle Si(111){\sqrt {3}}\times {\sqrt {3}}} - I n {\displaystyle In} S i ( 111 ) 31 × 31 {\displaystyle Si(111){\sqrt {31}}\times {\sqrt {31}}} - I n {\displaystyle In} 在表面上共存。这是由于吸附物在表面上不同区域的不同局域覆盖率所引发的不同类型的重构。

一般来说,表面上的重构都可以通过一个矩阵标记来描述。如果 a {\displaystyle a} b {\displaystyle b} 代表重构发生前表面结构的基矢, a s {\displaystyle a_{s}} b s {\displaystyle b_{s}} 代表重构发生后重构结构的基矢,则可用以下方程组联系两者:

借助以上的方程组,可以用以下的矩阵来表示二维的重构:

对于表面重构,更常见的标记方式是Wood's记号:

描述的是(hkl)平面上的重构。例如,“calcite(104)(2×1)重构”意为 calcite(方解石)(104)重构平面的原胞中一条基矢的长度变为重构前的两倍,另一条和重构前的长度一样。φ 代表重构后的原胞相对于重构前的旋转角。若 φ = 0,则最后一项可以略去不写。Wood's记号仅适用于表示重构前后基矢的夹角不发生改变的情况;若旋转对称性发生变化(例如正方形晶格经过重构后变成了六角形晶格),则无法用Wood's记号来表示。

测定材料表面的重构不但需要测量表面原子的排列方式,还得将表面的结构与材料内部的结构相互比较。符合要求的实验测量手段大致可分为两类:基于衍射的实验方法,例如低能电子衍射(LEED)或卢瑟福背散射;以及分辨率达到原子尺度的扫描探针技术,例如扫描隧道显微镜(STM)或原子力显微镜(AFM)。

由于硅的晶体结构是钻石结构,Si(100)的理想表面结构是1×1的正方形晶格,且每一硅原子都连接着两条悬键(英语:dangling bonds)。实际观测到的Si(100)表面发生了2×1重构——硅原子两两通过悬键的连接形成一列列二聚体,使悬键的数量减少了一半。这些二聚体有较好的长程有序度,可以在低能电子衍射实验中观测到。

Si(111)的重构较为复杂。硅在低温下沿(111)方向的解理会出现2×1重构,而加热到400°C以上时会出现更加复杂的7×7重构。7×7重构可以用二聚体-吸附原子(英语:adatom)-堆垛层错(英语:stacking fault)(DAS)模型来解释。一个7×7重构表面的原胞包含9个二聚体,12个吸附原子,以及一个角洞(corner hole)。Si(111)的7×7重构结构的探索历经长达25年;科学家借助了低能电子衍射和反射式高能电子衍射(RHEED)(英语:Reflection high-energy electron diffraction)的测量,以及理论计算才得以逐渐地认识其真貌。最终,格尔德·宾宁、海因里希·罗雷尔、Ch. Gerber 和 E. Weibel 发明的扫描隧道显微镜获得了7×7重构在实空间上的图像。7×7重构的完整结构细节也已由大规模并行计算所确认。

金的晶体结构是面心立方,Au(100)表面却重构为扭曲的六角形相。这个六角形相常常被认为是一种(28×5)结构,且相对于方向扭曲和旋转了约0.81°。当温度高于970K时,Au(100)表面发生相变,出现一种未旋转的六角形结构。

相关

  • 脂酶脂酶,是一种催化脂类的酯键水解反应的水溶性酶。因此,脂酶是酯酶下的一个亚类。脂酶存在于基本上所有的生物体中,它在对脂类(如甘油三酸酯、脂肪、油等)的消化、运输和剪切中发挥
  • 加拿大女王加拿大君主是立宪君主,是西敏制议会民主制度在加拿大的体现,为加拿大国家元首。现任君主是伊丽莎白女王二世,于1952年2月6日即位。加拿大君主除了统治加拿大外,也是另外15个英联
  • 虚时间虚时间(imaginary time)是单位时间的虚数倍。这是一个从狭义相对论和量子力学领域派生的概念。其常被用于联系量子力学和统计力学。
  • 点之记点之记是在测绘学中记载大地点位情况的资料。分为三角点、导线点、水准点等点之记。点之记的内容包括点名、等级、所在地、点位略图、实埋标石断面图及委托保管等信息。
  • 史蒂文·利斯伯吉尔史蒂文·利斯伯吉尔(英语:Steven Lisberger,1951年4月24日-)是一名美国电影男导演、制片人人及编剧,1982年曾指导拍摄《电子世界争霸战》而闻名。
  • 达马特·哈利勒帕夏达马特·哈利勒帕夏(土耳其语:Damat Halil Pasha;?-1629年),亚美尼亚人出身的奥斯曼帝国政治家。他曾在1616年-1619年和1626年-1628年两次出任大维齐尔 ,他曾任职于奥斯曼海军,并参加
  • 喷气推进实验室线上历书系统JPL线上历书系统(JPL Horizons On-Line Ephemeris System)提供了一个很简单的方式获得太阳系的数据和高精确度的星历表。有三种使用系统的方式:
  • 亚瑟·M·赛克勒亚瑟·M·赛克勒 (英语:Arthur Mitchell Sackler, 1913年8月22日-1987年5月26日)是一位美国精神科医生,企业家和艺术品收藏家。1913年出生于纽约市布鲁克林一个犹太家庭,父母是第
  • 安东卢氏安东卢氏(韩语:안동 노씨)是一个朝鲜族氏族。本贯庆尚北道安东市。根据2000年的调查,安东卢氏有3144名成员。其始祖卢满是卢垓的第五子。卢满曾是中国唐朝翰林院学者,被派遣至新
  • 黄贻楫黄贻楫(1850年-1900年),字济川,福建晋江人。清朝官员。两广总督黄宗汉之子。同治十三年(1874年)甲戌科陆润庠榜一甲第三名进士(探花),授翰林院编修。累迁至刑部主事,升湖北侯补道,又调礼