哥德巴赫猜想

✍ dations ◷ 2025-05-19 13:59:56 #哥德巴赫猜想

哥德巴赫猜想(Goldbach's conjecture)是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陈述为:

这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆。例如,

换句话说,哥德巴赫猜想主张每个大于等于4的偶数都是哥德巴赫数——可表示成两个素数之和的数。哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题。

其实,也有一部分奇数可以用两个素数的和表示,大多数的奇数无法用两个素数的和表示,例如:15=2+13 ,而 23、35等数则无法用两素数的和表示。

哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破。目前最好的结果是中国数学家陈景润在1973年发表的陈氏定理(也被称为“1+2”)。

哥德巴赫猜想另一个较弱的版本(也称为弱哥德巴赫猜想)是声称大于5的奇数都可以表示成三个素数之和。这个猜想可以从哥德巴赫猜想推出。1937年,苏联数学家伊万·维诺格拉多夫证明了每个充分大的奇数,都可以表示成三个素数之和,基本证明了弱哥德巴赫猜想。

1742年6月7日,普鲁士数学家克里斯蒂安·哥德巴赫在写给瑞士数学家莱昂哈德·欧拉的通信中,提出了以下的猜想:

上述与现今的陈述有所出入,原因是当时的哥德巴赫遵照的是“1也是素数”的约定。现今数学界已经不使用这个约定了。哥德巴赫原初猜想的现代陈述为:

欧拉在6月30日的回信中注明此一猜想可以有另一个等价的版本:

并将此一猜想视为一定理,但他却无法证明。今日常见的猜想陈述为欧拉的版本,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。

从关于偶数的哥德巴赫猜想,可推出:

的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇素数都能写成三个素数的和,也称为“哥德巴赫-维诺格拉多夫定理”或“三素数定理”。2013年,秘鲁数学家哈洛德·贺欧夫各特等人将维诺格拉多夫的结论进一步加强,并验证了较小的奇素数的情况,宣称完全证明了弱哥德巴赫猜想。

证明哥德巴赫猜想相当困难。直至今日,数学家对于哥德巴赫猜想的完整证明没有任何头绪。事实上,从1742年这个猜想正式出现,到二十世纪初期,在超过160年的时间里,尽管许多数学家对这个猜想进行了研究,但没有取得任何实质性的进展,也没有获得任何有效的研究方法。二十世纪以前对哥德巴赫猜想的研究,仅限于做一些数值上的验证工作,提出一些等价的关系式,或对之做一些进一步的猜测。1900年,希尔伯特在第二届国际数学家大会上提出的著名的二十三个希尔伯特问题之中的第八个问题,就包括了哥德巴赫猜想和与它类似的孪生素数猜想。希尔伯特的问题引发了数学家的极大兴趣,但对于哥德巴赫猜想的研究仍旧毫无进展。1912年第五届国际数际数学家大会上,德国数论专家爱德蒙·朗道曾经说过,即使要证明每个偶数能够表示成个素数的和,不管是多少,都是数学家力所不及的。1921年,英国数学家戈弗雷·哈罗德·哈代曾经在哥本哈根数学会议的一次演讲中声称:“哥德巴赫猜想的困难程度可以与任何一个已知的数学难题相比”。

哈代和朗道做出以上的看法时,对哥德巴赫猜想的研究已经踏在了突破的门槛上。关于哥德巴赫猜想的第一次重大突破正是出现在二十世纪20年代。这次突破与十九世纪至二十世纪初欧洲数学家们在数论与函数论方面取得的辉煌成就是分不开的。欧拉、高斯、黎曼、狄利克雷、阿达马等人的成果为后来的研究提供了强有力的工具和深厚的积累,打下了牢固的基础。1920年左右,英国数学家哈代和约翰·伊登斯尔·利特尔伍德极大地发展了解析数论,建立起了“圆法”等研究数论问题的有力工具。他们在1923年合作发表的论文中使用“圆法”证明了:在假设广义黎曼猜想成立的前提下,每个充分大的奇数都能表示为三个素数的和以及几乎每一个充分大的偶数都能表示成两个素数的和。当然,“几乎每一个”与“每一个”之间仍然有巨大的技术鸿沟。

大约于此同时,挪威数学家布朗提供了另外一种证明的思路。1919年,他使用推广后的“筛法”证明了:所有充分大的偶数都能表示成两个数之和,并且两个数的素因数个数都不超过9个。这个方法的思路是:如果能将其中的“9个”缩减到“1个”,就证明了哥德巴赫猜想。布朗证明的命题可以被记作“9+9”,以此类推,哥德巴赫猜想就是“1+1”。

从1920年开始,哈代和利特尔伍德合作陆续发表了七篇总标题为《“整数拆分”的几个问题》的论文,系统地发展出了堆垒数论中一个新的分析方法。这个新方法的思想在1918年哈代与印度数学家拉玛努贾合写的论文《组合分析的渐进公式》中就有表现。应用到哥德巴赫猜想上的话,圆法的思想是:对于非零整数 m {displaystyle m} )宣布彻底证明了弱哥德巴赫猜想。贺欧夫各特生于1977年,秘鲁籍,2003年获得普林斯顿大学博士学位。2010年开始担任法国国家科学研究院和巴黎高等师范学院的研究员。2012年5月,贺欧夫各特发表论文《论哥德巴赫问题的劣弧》()中给出了劣弧积分估计的一个更优上界。在这个更优估计的基础上,贺欧夫各特在2013年的论文中将优弧估计的条件放宽,把维诺格拉多夫定理中的下限降低到了1029左右,贺欧夫各特和同事David Platt用计算机验证在此之下的所有奇数都符合猜想,从而完成了弱哥德巴赫猜想的全部证明。

弱哥德巴赫猜想已经基本得到解决,对于偶数的哥德巴赫猜想,数学家们则主要将希望放在布朗的方法上。而二十世纪中叶,数学家们沿着布朗的思路,得到了不少改进后的成果。1924年汉斯·拉代马海尔(英语:Hans Rademacher)证明了“7+7”,1932年艾斯特曼证明了“6+6”,苏联数学家布赫希塔布在1938年和1940年分别证明了“5+5”与“4+4”。孔恩在1941年提出了“加权筛法”的概念,能在同样的筛函数上界和下界条件下取得更好的结果,他在1954年证明了“a+b”(a+b<7)。阿特勒·塞尔伯格利用求二次型极值的方法极大地改进了布朗的筛法,对筛函数的上界和下界做出了更精确的估计,从而出现了更优的结果:维诺格拉多夫在1956年证明了“3+3”,王元在1956年证明了“3+4”,并在1957年证明了“3+3”和“a+b”(a+b<6)以及“2+3”。

以上的结果中,没有能够证明偶数分拆成的两个数中一定有一个是素数的。1932年,埃斯特曼证明了,在假设广义黎曼猜想成立的前提下,“1+6”成立。1948年,伦伊·阿尔弗雷德(英语:Alfréd Rényi)利用林尼克创造的“大筛法”,证明了“1+”的结果。1956年,王元与维诺格拉多夫则证明了在同样的假定之下,“1+4”成立。1961年,苏联数学家巴尔巴恩证明了一个可以用来代替广义黎曼猜想的公式的弱化版。1962年,潘承洞也独立证明了此公式的另一个弱化版本,并得到“1+5”。而王元则指出潘承洞的结果其实可以推出“1+4”。潘承洞在同年用加强的结论得到了“1+4”的简化的证明,1963年巴尔巴恩也得到了同样的结果。1965年布赫希塔布则用同样的版本证明了“1+3”。与此同时,恩里科·邦别里与维诺格拉多夫也独立地用更简洁的方法证明了“1+3”。

使用布朗方法的最好结果是陈景润得到的。他在1973年发表了“1+2”的证明,其中对筛法作出了重大的改进,提出了一种新的加权筛法。因此“1+2”也被称作是陈氏定理。现今数学家们普遍认为,陈景润使用的方法已经将筛法发挥到了极致,以筛法来证明最终的“1+1”的可能性已经很低了。布朗方法似乎在最后的一步上停止了下来。如今数学界的主流意见认为:证明关于偶数的哥德巴赫猜想,还需要新的思路或者新的数学工具,或者在现有的方法上进行重大的改进,也有认为仅仅基于现有的方法上的改进无法证明偶数哥德巴赫猜想。

对于哥德巴赫猜想的实际验证表明,至少 4 10 14 {displaystyle scriptstyle 4cdot 10^{14}} 以下的偶数都能表示成两个素数的和。很多时候,偶数表示成两个素数和的方法还不止一种,比如 18 = 5 + 13 = 7 + 11 {displaystyle 18=5+13=7+11} 64 = 3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41 {displaystyle 64=3+61=5+59=11+53=17+47=23+41} ,等等。设有偶数 N {displaystyle N} ,它的哥德巴赫分拆数 G 2 ( N ) {displaystyle G_{2}(N)} 定义为它能够表示成两个素数相加之和的方法的个数,也就是集合 { ( p 1 , p 2 ) | p 1 + p 2 = N , p 1 p 2 } {displaystyle left{(p_{1},p_{2})left|p_{1}+p_{2}=N,p_{1}leqslant p_{2}right.right}} 中元素的个数:

哥德巴赫猜想就等于是说,每个大于等于6的偶数的哥德巴赫分拆数都大于0。如果能够找到哥德巴赫分拆数的表达式,或者找到它的某个严格大于0的下限,就能够证明哥德巴赫猜想了。因此,有不少关于哥德巴赫分拆数的范围的猜测。1923年,英国数学家哈代和利特尔伍德猜测:

与不少数学猜想一样,数值上的验证也是哥德巴赫猜想的重要一环。

截至2014年,数学家已经验证了 4 × 10 18 {displaystyle scriptstyle 4times 10^{18}} 以内的偶数,在所有的验证中,没有发现偶数哥德巴赫猜想的反例。

在数论中,有一些类似于哥德巴赫猜想的命题,其中有一些已经被证明,其余的仍然属于猜想,如哥德巴赫猜想一样。

相关

  • 体染色体隐性遗传在基因学中,显性(英语:dominance)是一个基因中一对等位基因之间的关系,其中一个等位基因的表型会表现出来,掩盖了同一基因座中另一个等位基因的表现。前面的等位基因称为显性基因,
  • 测绘科学测绘学研究测定和推算地面几何位置、地球形状及地球重力场,据此测量地球表面自然物体和人工设施的几何分布,编制各种比例尺地图的理论和技术的学科。测绘学的研究对象是地球的
  • 乳名乳名又叫小名、幼名、小字,是婴儿出生后,父母等长辈给小孩取的非正式的名字。有时是因为父母还没有选定正式的名字,所以取乳名作临时之用。士族喜爱取吉字小名,例如曹操的小名叫
  • 环丙酮环丙酮(化学式:C3H4O)是环丙烷的氧代衍生物。其熔点为-90°C,很不稳定,可通过乙烯酮与重氮甲烷在-145°C时反应制备。 由于母体化合物不甚稳定,合成中使用环丙酮的缩酮 代替环丙酮
  • 象虱科象虱属(学名:Haematomyzus)原是虱毛目(Phthiraptera)之下的一个属,只有三个物种。由于本属跟虱毛目其他物种的差异太大,所以独自放在象虱亚目之内,而整个象虱亚目之下亦只有象虱科一
  • 阿修罗 (印度神话)印度教神话的阿修罗(梵语:असुर),义为大力神,是一群追求力量的神族,与提婆神族对抗,有时被视为暴力之神。阿修罗族及提婆族(包括那伽族)都是迦叶波的后代。最早期的吠陀文献记载提
  • 2014年Gaon专辑冠军作品列表2014年Gaon专辑冠军作品列表《2014年Gaon专辑冠军作品列表》主要列举2014年度曾经登上“Gaon Chart”专辑周榜、月榜及年榜冠军的音乐专辑作品及其资料。4日 RAIN EFFECT(朝
  • 甘棠江甘棠江,上游又称东江河,位于中国广西壮族自治区桂林市灵川县境内,是漓江右岸支流,发源于灵川县西北端青狮潭镇(原九屋镇)半界村附近,向南流经杨柳界森林公园,进入青狮潭水库,于青狮潭
  • 水口站水口站位于福建省宁德市古田县水口镇,1989年12月20日随外福铁路水口电站改线工程投入使用。距来舟站105公里,距福州站89公里。现为五等站。客运办理旅客乘降、行李包裹托运;货
  • 周杰周杰(1970年8月5日-),男,祖籍山东,出生于陕西西安,中国大陆演员、歌手、企业家。1970年8月5日出生于陕西省西安市,祖籍山东,从小就是学校的文艺积极分子,小学五年级时就在学校演起了“小话剧”。上海戏剧学院表演系1989级本科,毕业后分配至中央实验话剧院工作。1998年在电视剧《还珠格格》中饰演福尔康。1999年出版个人写真集《深情尔康——周杰走过》。2000年在电视剧《少年包青天》中饰演包拯。2010年代后淡出娱乐圈改行经商,开设影视公司和农业公司,投资艺术品收藏,参与话剧演出。现为中国国家话剧