贝叶斯推断

✍ dations ◷ 2025-07-21 15:36:16 #贝叶斯统计

贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。

贝叶斯定理是由统计学家托马斯·贝斯(Thomas Bayes)根据许多特例推导而成,后来被许多研究者推广为一普遍的定理

贝叶斯推断将后验概率(考虑相关证据或数据后,某一事件的条件几率)推导为二个前件、先验概率(考虑相关证据或数据前,某一事件不确定性的几率)及似然函数(由概率模型推导而得)的结果。贝叶斯推断根据贝叶斯定理计算后验概率:

其中

针对不同的 H {\displaystyle \textstyle H} 数值,只有 P ( H ) {\displaystyle \textstyle P(H)} P ( E H ) {\displaystyle \textstyle P(E\mid H)} (都在分子)会影响 P ( H E ) {\displaystyle \textstyle P(H\mid E)} 的数值。假说的后验概率和其先验概率(固有似然率)和新产生的似然率(假说和新得到证据的相容性)乘积成正比。

贝叶斯定理也可以写成下式:

其中系数 P ( E H ) P ( E ) {\displaystyle \textstyle {\frac {P(E\mid H)}{P(E)}}} 可以解释成 E {\displaystyle E} H {\displaystyle H} 几率的影响。

贝叶斯推断最关键的点是可以利用贝斯定理结合新的证据及以前的先验几率,来得到新的几率(这和频率学派推断相反,频率论推论只考虑证据,不考虑先验几率)。

而且贝叶斯推断可以迭代使用:在观察一些证据后得到的后设几率可以当作新的先验几率,再根据新的证据得到新的后设几率。因此贝斯定理可以应用在许多不同的证据上,不论这些证据是一起出现或是不同时出现都可以,这个程序称为贝斯更新(Bayesian updating)。

若用文字表示,即为“后验和先验及似然率的乘积成正比”,有时也会写成“后验 = 先验 × 似然率,在有证据的情形下”。

贝叶斯推断有在人工智能及专家系统上应用。自1950年代后期开始,贝叶斯推断技巧就是电脑模式识别技术中的基础。现在也越来越多将贝叶斯推断和以模拟为基础的蒙地卡罗方法合并使用的应用,因为一些模杂的模型无法用贝叶斯分析得到解析解,因图模式结构可以配合一些快速的模拟方式(例如吉布斯抽样或是其他Metropolis–Hastings算法)。因为上述理由,贝叶斯推断在系统发生学研究社群中来越受到重视,许多的应用可以用同时估测许多人口和进化参数。

“贝叶斯”是指托马斯·贝叶斯(1702–1761),他证明了一个特例(现在知道是贝叶斯定理的特例),不过皮埃尔-西蒙·拉普拉斯(1749–1827)推导了此定理的一般版本,应用在天体力学、医疗统计学、可靠度(英语:Reliability (statistics))及法学上。早期的贝叶斯推断是用拉普拉斯不充分理由原则(英语:principle of insufficient reason)所得的均匀先验,称为逆向几率(英语:inverse probability)(因为是由观测值倒推参数的归纳推理,或是从结果倒推到原因)。在1920年代以后,逆向几率很大程度的被另一群称为频率论统计(英语:frequentist statistics)的方式取代。

二十世纪时,拉普拉斯的概念往下分支为二派,开始出现主观贝叶斯方法及客观贝叶斯方法。客观贝叶斯方法(或是不提供信息的贝叶斯方法)中,统计分析只依照假设的模型、分析的资料以及给定先验分布的方式(不同的客观贝叶斯方法会有不同给定先验分布的方式)。主观贝叶斯方法(或是提供信息的贝叶斯方法)中,先验的规格依信念(也是分析希望要呈现的主张)而定,信念可以由专家整理资讯后总结产生,也可以根据以往的研究等。

1980年代发现了马尔科夫蒙特卡洛方法,让贝叶斯方法的研究及应用有大幅的发展,除去了许多运算上的问题,也有越来越多人愿意参与非标准的复杂问题。不过虽然贝叶斯方法的研究仍在成长,大部分大学本科的教学仍是以频率论统计(英语:frequentist statistics)为基础。不过贝叶斯方法也广为许多领域接受及应用,例如在机器学习的领域中。

相关

  • 昏迷指数昏迷指数(Coma Scale、CS),是医学上评估病人昏迷程度的指标,现今用的最广的是格拉斯哥昏迷指数(Glasgow Coma Scale、GCS)。此指数是由格拉斯哥大学的两位神经外科教授Graham Teas
  • 良性肿瘤良性肿瘤(英语:benign tumor)是肿瘤的一种,通常区别于恶性肿瘤。良性肿瘤的生长速度缓慢,呈膨胀性生长,表面较光滑。由于良性瘤体在局部会不断增大(一般无全身症状),压迫周围的正常组
  • 丙泊酚异丙酚(英语:Propofol),又名“丙泊酚”,商品名Diprivan及其他。本品为一种短效静脉注射麻醉药,可用于全身麻醉的诱导及维持、成人机械呼吸器(英语:mechanical ventilation)或手术的镇
  • 西米德兰兹都会区西米德兰(英语:West Midlands),是英国英格兰下辖的9个次级行政区之一,位于中部以西一带。注:“”为1974年的区划
  • 犯人客体 · 行为(作为 · 不作为) 危害结果 · 因果关系 · 犯罪主体 主观要件(故意 · 过失) 未遂 · 既遂 · 中止 · 预备阻却违法事由 正当防卫 · 紧急避难心神丧失
  • 草胡椒属草胡椒属(学名:Peperomia)是胡椒科下的一个属,为一年生或多年生、肉质草本植物。该属共有约1000种,分布于热带和亚热带地区。Peperomia argyreiaPeperomia blandaPeperomia campt
  • 浙南闽语浙南闽语,浙江省温州市下辖的苍南县、平阳县、洞头区,浙江省台州市玉环县闽南人主要通行的语言,语言学上分类属于闽南语浙南片,是闽南语的一支,使用的浙南人口超过150万。《中国
  • 万建中万建中可以指:
  • 缅因猫缅因猫是北美洲自然产生的最早的长毛猫品种,原产于美国东岸缅因州附近。缅因猫是美国猫种当中数量最多的种群,除了其聪颖与活泼广为人知以外,其独一无二巨大的体型也令人过目难
  • 哥德斯堡纲领哥德斯堡纲领(德语:Godesberger Programm)是德国社会民主主义政党社民党的纲领。该纲领于1959年11月15日在德国巴德歌德斯堡(今德国波恩)举行的社民党大会上批准通过。哥德斯堡纲