贝叶斯推断

✍ dations ◷ 2025-04-03 17:19:51 #贝叶斯统计

贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的技巧之一。贝叶斯更新(Bayesian updating)在序列分析中格外的重要。贝叶斯推断应用在许多的领域中,包括科学、工程学、哲学、医学、体育运动、法律等。在决策论的哲学中,贝叶斯推断和主观概率有密切关系,常常称为贝叶斯概率。

贝叶斯定理是由统计学家托马斯·贝斯(Thomas Bayes)根据许多特例推导而成,后来被许多研究者推广为一普遍的定理

贝叶斯推断将后验概率(考虑相关证据或数据后,某一事件的条件几率)推导为二个前件、先验概率(考虑相关证据或数据前,某一事件不确定性的几率)及似然函数(由概率模型推导而得)的结果。贝叶斯推断根据贝叶斯定理计算后验概率:

其中

针对不同的 H {\displaystyle \textstyle H} 数值,只有 P ( H ) {\displaystyle \textstyle P(H)} P ( E H ) {\displaystyle \textstyle P(E\mid H)} (都在分子)会影响 P ( H E ) {\displaystyle \textstyle P(H\mid E)} 的数值。假说的后验概率和其先验概率(固有似然率)和新产生的似然率(假说和新得到证据的相容性)乘积成正比。

贝叶斯定理也可以写成下式:

其中系数 P ( E H ) P ( E ) {\displaystyle \textstyle {\frac {P(E\mid H)}{P(E)}}} 可以解释成 E {\displaystyle E} H {\displaystyle H} 几率的影响。

贝叶斯推断最关键的点是可以利用贝斯定理结合新的证据及以前的先验几率,来得到新的几率(这和频率学派推断相反,频率论推论只考虑证据,不考虑先验几率)。

而且贝叶斯推断可以迭代使用:在观察一些证据后得到的后设几率可以当作新的先验几率,再根据新的证据得到新的后设几率。因此贝斯定理可以应用在许多不同的证据上,不论这些证据是一起出现或是不同时出现都可以,这个程序称为贝斯更新(Bayesian updating)。

若用文字表示,即为“后验和先验及似然率的乘积成正比”,有时也会写成“后验 = 先验 × 似然率,在有证据的情形下”。

贝叶斯推断有在人工智能及专家系统上应用。自1950年代后期开始,贝叶斯推断技巧就是电脑模式识别技术中的基础。现在也越来越多将贝叶斯推断和以模拟为基础的蒙地卡罗方法合并使用的应用,因为一些模杂的模型无法用贝叶斯分析得到解析解,因图模式结构可以配合一些快速的模拟方式(例如吉布斯抽样或是其他Metropolis–Hastings算法)。因为上述理由,贝叶斯推断在系统发生学研究社群中来越受到重视,许多的应用可以用同时估测许多人口和进化参数。

“贝叶斯”是指托马斯·贝叶斯(1702–1761),他证明了一个特例(现在知道是贝叶斯定理的特例),不过皮埃尔-西蒙·拉普拉斯(1749–1827)推导了此定理的一般版本,应用在天体力学、医疗统计学、可靠度(英语:Reliability (statistics))及法学上。早期的贝叶斯推断是用拉普拉斯不充分理由原则(英语:principle of insufficient reason)所得的均匀先验,称为逆向几率(英语:inverse probability)(因为是由观测值倒推参数的归纳推理,或是从结果倒推到原因)。在1920年代以后,逆向几率很大程度的被另一群称为频率论统计(英语:frequentist statistics)的方式取代。

二十世纪时,拉普拉斯的概念往下分支为二派,开始出现主观贝叶斯方法及客观贝叶斯方法。客观贝叶斯方法(或是不提供信息的贝叶斯方法)中,统计分析只依照假设的模型、分析的资料以及给定先验分布的方式(不同的客观贝叶斯方法会有不同给定先验分布的方式)。主观贝叶斯方法(或是提供信息的贝叶斯方法)中,先验的规格依信念(也是分析希望要呈现的主张)而定,信念可以由专家整理资讯后总结产生,也可以根据以往的研究等。

1980年代发现了马尔科夫蒙特卡洛方法,让贝叶斯方法的研究及应用有大幅的发展,除去了许多运算上的问题,也有越来越多人愿意参与非标准的复杂问题。不过虽然贝叶斯方法的研究仍在成长,大部分大学本科的教学仍是以频率论统计(英语:frequentist statistics)为基础。不过贝叶斯方法也广为许多领域接受及应用,例如在机器学习的领域中。

相关

  • 城堡城堡是中世纪欧洲和中东地区的一种武装建筑,一般特指作为领主和贵族私人住所的武装建筑,而非作为一个城镇公共防御设施的要塞。由于建筑时期和地点的不同,城堡有很多不同的形式
  • 概述生物化学 – 是对生物体体内化学过程的研究。旨在阐释所有生命体和生命活动的化学机理。生物技术、生物发光、遗传工程、内分泌学、神经化学、血液学、营养学、光合作用、
  • 赫尔曼·埃米尔·费歇尔慕尼黑大学 (1875-81) 埃尔朗根-纽伦堡大学 (1881-88) 维尔茨堡大学 (1888-92)阿尔弗雷德·斯托克(英语:Alfred Stock)赫尔曼·埃米尔·费歇尔(德语:Hermann Emil Fischer,1852年1
  • T细胞受体结构 / ECODT细胞受体(T cell receptor, TCR)是T细胞表面的特异性受体,负责识别由主要组织相容性复合体(MHC)所呈递的抗原,它与B细胞受体(英语:B-cell receptor)不同,并不能识别游离的
  • 柴之芳柴之芳(1942年9月-),中国放射化学家。中国科学院院士。籍贯浙江省宁波鄞县,出生于上海。1964年,复旦大学物理二系毕业。1980年-1982年,德国科隆大学洪堡访问学者。
  • 狮门桥加拿大不列颠哥伦比亚省大温哥华地区 南端:温哥华 北端:狮门桥(Lions' Gate Bridge)是加拿大不列颠哥伦比亚省内一条悬索吊桥,横越布勒内湾的第一海峡,连接温哥华市中心及北岸市
  • 使用此条目为全球互联网使用率,整合了有关表格、图表、地图以及使用率等条目或资料。卡尔纳僵尸网络为骇客以“2012年互联网普查”的名义使用骇客技术对420,000名用户进行网络使
  • 橙带党奥兰治兄弟会(Orange Order),正式名称忠诚奥兰治机构(Loyal Orange Institution),是一个国际新教兄弟会(英语:Fraternal order)组织,主要在北爱尔兰活跃,此外在苏格兰、英联邦、美国、
  • 胡世桢胡世桢 (英语:Sze-Tsen Hu, 1914年10月9日-1999年5月6日)是一位美国华人数学家。1914年出生于浙江湖州,1938年获得国立中央大学学士学位,1947年获得曼彻斯特大学博士学位,师从马
  • 珍妮特·纳波利塔诺珍妮特·纳波利塔诺(英语:Janet Napolitano,1957年11月29日-),美国政治家和律师,现是第20任加州大学校长。她曾是第21任亚利桑那州州长,是该州的第三位女性州长。2006年至2007年期间