凸包

✍ dations ◷ 2025-08-10 23:10:06 #凸包
在一个实数向量空间 V {displaystyle V} 中,对于给定集合 X {displaystyle X} ,所有包含X的凸集的交集 S {displaystyle S} 被称为 X {displaystyle X} 的凸包。X {displaystyle X} 的凸包可以用 X {displaystyle X} 内所有点 ( x 1 , … , x n ) {displaystyle (x_{1},ldots ,x_{n})} 的线性组合来构造。在二维欧几里得空间中,凸包可想象为一条刚好包着所有点的橡皮圈。逐次将点加入,然后检查之前的点是否在新的凸包上。由于每次都要检查所有之前的点,时间复杂度为 O ( n 2 ) {displaystyle O(n^{2})} 。首先由一点必定在凸包的点开始,例如最左的一点 A 1 {displaystyle A_{1}} 。然后选择 A 2 {displaystyle A_{2}} 点使得所有点都在 A 1 A 2 {displaystyle A_{1}A_{2}} 的右方,这步骤的时间复杂度是 O ( n ) {displaystyle O(n)} ,要比较所有点以 A 1 {displaystyle A_{1}} 为原点的极坐标角度。以 A 2 {displaystyle A_{2}} 为原点,重复这个步骤,依次找到 A 3 , A 4 , . . . , A k , A 1 {displaystyle A_{3},A_{4},...,A_{k},A_{1}} 。这总共有 k {displaystyle k} 步。因此,时间复杂度为 O ( k n ) {displaystyle O(kn)} 。由最底的一点 A 1 {displaystyle A_{1}} 开始(如果有多个这样的点,那么选择最左边的),计算它跟其他各点的连线和x轴正向的角度,按小至大将这些点排序,称它们的对应点为 A 2 , A 3 , . . . , A n {displaystyle A_{2},A_{3},...,A_{n}} 。这里的时间复杂度可达 O ( n log ⁡ n ) {displaystyle O(nlog {n})} 。考虑最小的角度对应的点 A 3 {displaystyle A_{3}} 。若由 A 2 {displaystyle A_{2}} 到 A 3 {displaystyle A_{3}} 的路径相对 A 1 {displaystyle A_{1}} 到 A 2 {displaystyle A_{2}} 的路径是向右转的(可以想象一个人沿 A 1 {displaystyle A_{1}} 走到 A 2 {displaystyle A_{2}} ,他站在 A 2 {displaystyle A_{2}} 时,是向哪边改变方向),表示 A 3 {displaystyle A_{3}} 不可能是凸包上的一点,考虑下一点由 A 2 {displaystyle A_{2}} 到 A 4 {displaystyle A_{4}} 的路径;否则就考虑 A 3 {displaystyle A_{3}} 到 A 4 {displaystyle A_{4}} 的路径是否向右转……直到回到 A 1 {displaystyle A_{1}} 。这个算法的整体时间复杂度是 O ( n log ⁡ n ) {displaystyle O(nlog {n})} ,注意每点只会被考虑一次,而不像Jarvis步进法中会考虑多次。这个算法由葛立恒在1972年发明。它的缺点是不能推广到二维以上的情况。将点按x坐标的值排列,再按y坐标的值排列。选择x坐标为最小值的点,在这些点中找出y坐标的值最大和y坐标的值最小的点。对于x坐标为最大值也是这样处理。将两组点中y坐标值较小的点连起。在这条线段下的点,找出它们之中y坐标值最大的点,又在它们之间找x坐标值再最小和最大的点……如此类推。时间复杂度是 O ( n log ⁡ n ) {displaystyle O(nlog {n})} 。将点集X分成两个不相交子集。求得两者的凸包后,计算这两个凸包的凸包,该凸包就是X的凸包。时间复杂度是 O ( n log ⁡ n ) {displaystyle O(nlog {n})} 。选择最左、最右、最上、最下的点,它们必组成一个凸四边形(或三角形)。这个四边形内的点必定不在凸包上。然后将其余的点按最接近的边分成四部分,再进行快包法(QuickHull)。

相关

  • 会阴会阴(英文:perineum,拉丁文:perineum,huìyīn,又称CV1或RN1)是人体泌尿生殖系统中从生殖器到肛门的部位,主要是软组织构成,在针灸学是一个任脉穴。会阴的具体范围有不同的定义,有一种
  • 开放式关系开放式关系(英语:open relationship)是人际关系的一种,处在这种关系中的双方有保持伴侣关系的意愿,但又不受主流的单配偶制的限制。这意味着双方同意保持恋爱关系或伴侣关系,同时
  • 基因水平转移基因水平转移(英语:horizontal gene transfer,缩写:HGT)又称水平基因转移或基因侧向转移(lateral gene transfer,缩写:LGT),指生物将遗传物质传递给其他细胞而非其子代的过程,例如:接合
  • 魔法魔法,是一种在现实中尚未经过证实的,催动并控制能量的方法,大多牵涉具神秘色彩的力量或是行为。广义而言的魔法(包括下文所提及的仙术、妖术等)多为依附在特定信仰体系之下,为信仰
  • 奇科皮坐标:42°08′55″N 72°36′30″W / 42.14861°N 72.60833°W / 42.14861; -72.60833奇科皮(英语:Chicopee)是美国马萨诸塞州汉登县的一个城市,位于康涅狄格河东岸。面积61.9平
  • span class=nowrapTlsub2/subSOsub4/sub/span&g硫酸亚铊是铊(I)的硫酸盐,化学式为Tl2SO4,无臭无味,具有很高的毒性,曾被广泛用作杀鼠剂和杀虫剂,美国已于1972年起禁用,其他国家也陆续禁用。硫酸亚铊和K2SO4具有相同的结构。
  • 细颗粒物悬浮颗粒或称颗粒物(particulate matter (PM))、大气颗粒物(atmospheric particulate matter)、颗粒(particulates),泛指悬浮在空气中的固体颗粒或液滴,颗粒微小甚至肉眼难以辨识但
  • 勃兰登堡选帝侯这是一份勃兰登堡藩侯兼选帝侯的名单。在成为选侯之前,勃兰登堡的领主的爵位只是藩侯。关于获得选侯头衔之前勃兰登堡地区统治者的情况,请参见“勃兰登堡藩侯”。1415年,皇帝西
  • 卡拉恰伊人卡拉恰伊人(卡拉恰伊语:Къарачайлыла,俄语:Карача́евцы)是突厥语民族的一支,主要居住在俄罗斯卡拉恰伊-切尔克斯共和国,少数分布在哈萨克斯坦、土耳其等地
  • 极限竞速7《极限竞速 7》(英语:Forza Motorsport 7)是一款由Turn 10工作室开发,微软工作室发行的竞速游戏,平台为Xbox One和Microsoft Windows 。本作是《极限竞速》系列的第7部作品, 于20