其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)
G2 F4E6 E7E8
劳仑兹群
庞加莱群
环路群
量子群
O(∞) SU(∞) Sp(∞)
在群论中,循环群(英文:cyclic group),是指能由单个元素所生成的群。有限循环群同构于整数同余加法群Z/Z,无限循环群则同构于整数加法群。每个循环群都是阿贝尔群,亦即其运算是可交换的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。
设折旋转对称的对称群为,属Zn抽象群类型。在三维里,亦存在其他代数地相同的对称群,详见三维点群。
需留意的是,圆的所有旋转所组成之群1(圆群)不是循环的,甚至不是可数的。
有限循环群的环图全是有着其元素在各个角上的边形。下面环图中的黑角表示是单位元,而其他的角则为群的其他元素。一个环包括著连接着单位元之元素的接续之次方。
所有循环群的子群及商群都是循环的。特别地,Z的子群为Z的形式,其中为非负整数。对于不同的 m ,Z 形式的子群是不同的,且除了当然群(=0)外都同构于Z。Z的子群格同构于以可除性排序之自然数格的对偶。所有Z的商群都是有限的,除了一个当然的例外Z/{0}之外。对每个的正约数,群Z/Z恰好有一个目的子群,它由/的剩余类所产生。其不存在其他的子群。故其子群格会同构于以可除性排序之的约数所组成的集合。
其中有一个很特别的:一个循环群是简单的当且仅当其目(元素数目)为素数。
举一个实际的问题,给定一个目之有限子群,其生成元为,并要求求得以某一整数之所生成的子群之大小。这里,会是能使能被整除之最小正整数。因此其为/,其中为和的最大公约数。换句话说,由产生之子群之指标为。其理由在数论中被称为指标计算算法。
阿贝尔群Z的自同态环会同构于此阿贝尔群,且使其构成一个环。在此同构之下,数字会对应于将每个元素映射至其次乘积之值上之Z的自同态。此一自同态只有在和互素时会是个双射函数,所以Z的自同构群会同构于群Zn×(见上面)。Z的自同构群有时会被称为Z的特征群,且此一群的建构会直接导致对狄利克雷特征的定义。
相似地,加法群Z的自同态环会同构于环Z,且其自同构群会同构于环Z的单位群,即{−1, +1} 和Z的直积,因子Z有有限指数。任何格罗莫夫双曲群的阿贝尔子群都是逼肖循环群。