并矢张量

✍ dations ◷ 2025-04-26 13:17:26 #张量

在多重线性代数里,并矢张量(dyadic tensor)是一个以特别标记法写出的二阶张量,是由成对的向量并置形成的。针对这特别标记法,有一套专门计算这种表达式,类似于矩阵代数规则的方法。并矢张量的每一对向量的并置称为并矢(dyad)。两个单位基底向量的并矢积称为单位并矢(unit dyad)。标量与单位并矢的乘积就是并矢。

例如,设定两个三维向量 v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,}

其中, i {\displaystyle {\boldsymbol {i}}\,} j {\displaystyle {\boldsymbol {j}}\,} k {\displaystyle {\boldsymbol {k}}\,} ,形成了一个三维空间里的标准正交基的单位基底向量。

那么, v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 并置成为

其中, i i {\displaystyle {\boldsymbol {ii}}\,} i j {\displaystyle {\boldsymbol {ij}}\,} i k {\displaystyle {\boldsymbol {ik}}\,} 等等,都是单位并矢, v 1 w 1 i i {\displaystyle v_{1}w_{1}{\boldsymbol {ii}}\,} v 1 w 2 i j {\displaystyle v_{1}w_{2}{\boldsymbol {ij}}\,} v 1 w 3 i k {\displaystyle v_{1}w_{3}{\boldsymbol {ik}}\,} 等等,都是并矢。

并矢张量 v w {\displaystyle {\boldsymbol {vw}}\,} 也可以表达为

根据Morse与feshbach所著作的权威教科书,在三维空间里,并矢张量 A {\displaystyle \mathbf {A} \,} 是一个3×3阵列,其分量 A m n ,   m , n = 1 , 2 , 3 {\displaystyle A_{mn},\ m,n=1,2,3\,} ,当从一个坐标系变换到另外一个坐标系时,遵守协变变换(covariant transformation)的定律。

其中, A i j {\displaystyle A_{ij}'\,} 是变换后的分量。

所以,并矢张量是一个二阶协变张量。反过来说,按照这定义推广,任意二阶协变张量都是并矢张量:

应用点积,并矢张量 A {\displaystyle \mathbf {A} \,} 可以与向量 v {\displaystyle {\boldsymbol {v}}\,} 综合在一起:

其中, e m {\displaystyle {\boldsymbol {e}}_{m}\,} e n {\displaystyle {\boldsymbol {e}}_{n}\,} e {\displaystyle {\boldsymbol {e}}_{\ell }\,} ,都是标准正交基的基底向量。

注意到 ( e m e n ) e = e m δ n {\displaystyle ({\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n})\cdot {\boldsymbol {e}}_{\ell }={\boldsymbol {e}}_{m}\delta _{n\ell }\,} ;其中, δ n {\displaystyle \delta _{n\ell }\,} 是克罗内克函数。所以,

这点积运算得到的结果是一个协变向量。

并矢张量的缩并(tensor contraction)运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的点积 e m e n {\displaystyle {\boldsymbol {e}}_{m}\cdot {\boldsymbol {e}}_{n}\,} ,以方程式表达为

只成立于三维空间,并矢张量的旋转因子运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的叉积 e m × e n {\displaystyle {\boldsymbol {e}}_{m}\times {\boldsymbol {e}}_{n}\,} ,以方程式表达为

这也可以表达为 A {\displaystyle \mathbf {A} \,} 与列维-奇维塔符号 ϵ i m n {\displaystyle \epsilon _{imn}\,} 的完全缩并:

两个向量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 的并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 其实就是张量积 v w {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\,} 。 两个并矢积作形式上的相加就是并矢张量,从而并矢张量和二阶张量(严格地说,是二阶的反变张量)是同义词。力学、电动力学中常见的例子就是单位并矢张量 I = i i + j j + k k {\displaystyle {\mathcal {I}}={\boldsymbol {ii}}+{\boldsymbol {jj}}+{\boldsymbol {kk}}\,} 、转动惯量 I = ( r 2 I r r ) ρ d V {\displaystyle \mathbf {I} =\iiint (r^{2}{\mathcal {I}}-{\boldsymbol {r}}{\boldsymbol {r}})\,\rho \,dV\,} 以及马克士威应力张量等;量子力学中的角动量耦合(angular momentum coupling)理论也要用到并矢张量。

需要注意:并矢积是不可交换的,也就是说,除非两个矢量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 线性相关,否则一定有 v w w v {\displaystyle {\boldsymbol {vw}}\neq {\boldsymbol {wv}}\,}

在物理学中,并矢张量最重要的应用之一就是它和向量的缩并。对于并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 和向量 u {\displaystyle {\boldsymbol {u}}\,} 的缩并,规定

如果要求这种规定也适用于量子力学中的态矢量,在这种情况下就要特别注意每个式子右端各个向量的先后顺序:用狄拉克符号来写,则 u v = u | v {\displaystyle {\boldsymbol {u}}\cdot {\boldsymbol {v}}=\langle u|v\rangle \,}

V {\displaystyle V\,} 是域 F {\displaystyle F\,} 上的一个线性空间,则下述定义是等价的。

定义1. 对于任意 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} ,称它们的张量积 v w V V {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\in V\otimes V\,} v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 的并矢积并将其简记为 v w {\displaystyle {\boldsymbol {vw}}\,} ,称为并矢张量。更加推广,称 V V {\displaystyle V\otimes V\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量,或者二阶反变张量。

定义2. 如果有 F {\displaystyle F\,} 上的一个线性空间 W {\displaystyle W\,} 以及双线性映射 ϕ : V × V W {\displaystyle \phi :V\times V\rightarrow W\,} 满足

则称 W {\displaystyle W\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量或二阶反变张量,把 ϕ ( v , w ) {\displaystyle \phi ({\boldsymbol {v}},{\boldsymbol {w}})\,} 记为 v w {\displaystyle {\boldsymbol {vw}}\,}

定义3. V {\displaystyle V\,} 上的并矢张量(或者二阶反变张量)这个概念可以按照下述规则来建立:

注: 所谓形式和,就是说我们既不刻意追究求和的实际含义,也关心求和的结果在哪个集合中,而只是知道这种求和满足交换律和结合律。

既然上述定义等价,我们就把 V {\displaystyle V\,} 上所有的并矢张量所构成线性空间记为 V V {\displaystyle V\otimes V\,} 。在此基础上,如果 V {\displaystyle V\,} 是一个内积空间并把 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} 的内积记为 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} (当 F = C {\displaystyle F=\mathbb {C} \,} 时,约定 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} v {\displaystyle {\boldsymbol {v}}\,} 是共轭线性的),则定义并矢张量 T {\displaystyle \mathbf {T} \,} 和矢量 v {\displaystyle {\boldsymbol {v}}\,} 的缩并 T v {\displaystyle \mathbf {T} \cdot {\boldsymbol {v}}\,} v T {\displaystyle {\boldsymbol {v}}\cdot \mathbf {T} \,} 都是 V {\displaystyle V\,} 中的向量,满足下述运算律:

设定 M {\displaystyle \mathbf {M} \,} 为一个并矢张量:

M {\displaystyle \mathbf {M} \,} 是一个二维空间的 90° 旋转算子 (rotation operator) 。它可以

相关

  • Angewandte Chemie International Edition《应用化学》(德语:Angewandte Chemie)是一本涵盖化学所有方面的同行评审科学期刊,每周出版一期。2011年,该刊的影响因子为13.455,它是发表原创研究的化学期刊中影响因子最高的;201
  • ɵ半闭央圆唇元音(close-mid central rounded vowel、high-mid central rounded vowel)是元音的一种,用于一些语言当中,国际音标以⟨ɵ⟩代表此音,而X-SAMPA音标则以⟨8⟩代表此音
  • 聊天室网络聊天室通常直称聊天室,是一种人们可以在线交谈的网络论坛,在同一聊天室的人们通过广播消息进行实时交谈。聊天室可以建立在即时通讯软件(如QQ)、P2P软件、互联网及万维网(如
  • 巴里·霍金斯巴里·霍金斯(英语:Barry Hawkins,1979年4月23日-)为出身于英国肯特郡的腾(英语:Ditton, Kent)的职业斯诺克选手,于1996年从业余转为职业身份;直到2004-2005斯诺克球季才开始有突出表
  • 盐水蜂炮盐水烽炮,位于台南市盐水区,由盐水武庙主办,所谓烽炮是指许多冲天炮组成的大型发炮台(状如多管火箭炮组合),点燃时万炮齐发,会发出鸣声,称“烽炮”。盐水烽炮名列世界三大民俗庆典,享
  • 威尔·史密斯小威拉德·卡罗尔·“威尔”·史密斯(英语:Willard Carroll "Will" Smith Jr.,1968年9月25日-)是一名美国男演员、监制、嘻哈歌手。他在电影、电视方面曾提名两座奥斯卡金像奖和
  • 不送气边搭嘴音不送气边搭嘴音(Tenuis lateral click)是一种辅音,主要出现于南非的一些口语中。其中,术语“不送气”(tenuis)又称“无声爆破音”,特指清音、不送气(unaspirated)、未颚音化、未声门
  • 黄勉之黄勉之(1853年-1919年),江苏江宁人。清朝音乐家。早年学琴于陶梦兰,出家向枯木禅师学琴。后在京师设琴社以传授琴艺,“教人无倦容,课期既定,虽严寒酷暑大风雨不辍”。有弟子杨宗稷、
  • 赛睿赛睿 (英文名steelseries)是丹麦的游戏外设和配件制造商,包括耳机,键盘,鼠标和鼠标垫。赛睿是由Jacob Wolff-Petersen创立于2001年。公司原名Soft Trading后于2007年改名为Stee
  • 派汶拼音派汶拼音(泰语:ไพบูลย์;英语:Paiboon;派汶拼音:pai buun),是派汶出版社制定的泰语拼音系统,由于皇家泰语音译通用系统删除了泰语中不符合欧洲语言的音韵特征,泰英词典中常常采