并矢张量

✍ dations ◷ 2025-09-11 04:59:21 #张量

在多重线性代数里,并矢张量(dyadic tensor)是一个以特别标记法写出的二阶张量,是由成对的向量并置形成的。针对这特别标记法,有一套专门计算这种表达式,类似于矩阵代数规则的方法。并矢张量的每一对向量的并置称为并矢(dyad)。两个单位基底向量的并矢积称为单位并矢(unit dyad)。标量与单位并矢的乘积就是并矢。

例如,设定两个三维向量 v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,}

其中, i {\displaystyle {\boldsymbol {i}}\,} j {\displaystyle {\boldsymbol {j}}\,} k {\displaystyle {\boldsymbol {k}}\,} ,形成了一个三维空间里的标准正交基的单位基底向量。

那么, v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 并置成为

其中, i i {\displaystyle {\boldsymbol {ii}}\,} i j {\displaystyle {\boldsymbol {ij}}\,} i k {\displaystyle {\boldsymbol {ik}}\,} 等等,都是单位并矢, v 1 w 1 i i {\displaystyle v_{1}w_{1}{\boldsymbol {ii}}\,} v 1 w 2 i j {\displaystyle v_{1}w_{2}{\boldsymbol {ij}}\,} v 1 w 3 i k {\displaystyle v_{1}w_{3}{\boldsymbol {ik}}\,} 等等,都是并矢。

并矢张量 v w {\displaystyle {\boldsymbol {vw}}\,} 也可以表达为

根据Morse与feshbach所著作的权威教科书,在三维空间里,并矢张量 A {\displaystyle \mathbf {A} \,} 是一个3×3阵列,其分量 A m n ,   m , n = 1 , 2 , 3 {\displaystyle A_{mn},\ m,n=1,2,3\,} ,当从一个坐标系变换到另外一个坐标系时,遵守协变变换(covariant transformation)的定律。

其中, A i j {\displaystyle A_{ij}'\,} 是变换后的分量。

所以,并矢张量是一个二阶协变张量。反过来说,按照这定义推广,任意二阶协变张量都是并矢张量:

应用点积,并矢张量 A {\displaystyle \mathbf {A} \,} 可以与向量 v {\displaystyle {\boldsymbol {v}}\,} 综合在一起:

其中, e m {\displaystyle {\boldsymbol {e}}_{m}\,} e n {\displaystyle {\boldsymbol {e}}_{n}\,} e {\displaystyle {\boldsymbol {e}}_{\ell }\,} ,都是标准正交基的基底向量。

注意到 ( e m e n ) e = e m δ n {\displaystyle ({\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n})\cdot {\boldsymbol {e}}_{\ell }={\boldsymbol {e}}_{m}\delta _{n\ell }\,} ;其中, δ n {\displaystyle \delta _{n\ell }\,} 是克罗内克函数。所以,

这点积运算得到的结果是一个协变向量。

并矢张量的缩并(tensor contraction)运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的点积 e m e n {\displaystyle {\boldsymbol {e}}_{m}\cdot {\boldsymbol {e}}_{n}\,} ,以方程式表达为

只成立于三维空间,并矢张量的旋转因子运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的叉积 e m × e n {\displaystyle {\boldsymbol {e}}_{m}\times {\boldsymbol {e}}_{n}\,} ,以方程式表达为

这也可以表达为 A {\displaystyle \mathbf {A} \,} 与列维-奇维塔符号 ϵ i m n {\displaystyle \epsilon _{imn}\,} 的完全缩并:

两个向量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 的并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 其实就是张量积 v w {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\,} 。 两个并矢积作形式上的相加就是并矢张量,从而并矢张量和二阶张量(严格地说,是二阶的反变张量)是同义词。力学、电动力学中常见的例子就是单位并矢张量 I = i i + j j + k k {\displaystyle {\mathcal {I}}={\boldsymbol {ii}}+{\boldsymbol {jj}}+{\boldsymbol {kk}}\,} 、转动惯量 I = ( r 2 I r r ) ρ d V {\displaystyle \mathbf {I} =\iiint (r^{2}{\mathcal {I}}-{\boldsymbol {r}}{\boldsymbol {r}})\,\rho \,dV\,} 以及马克士威应力张量等;量子力学中的角动量耦合(angular momentum coupling)理论也要用到并矢张量。

需要注意:并矢积是不可交换的,也就是说,除非两个矢量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 线性相关,否则一定有 v w w v {\displaystyle {\boldsymbol {vw}}\neq {\boldsymbol {wv}}\,}

在物理学中,并矢张量最重要的应用之一就是它和向量的缩并。对于并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 和向量 u {\displaystyle {\boldsymbol {u}}\,} 的缩并,规定

如果要求这种规定也适用于量子力学中的态矢量,在这种情况下就要特别注意每个式子右端各个向量的先后顺序:用狄拉克符号来写,则 u v = u | v {\displaystyle {\boldsymbol {u}}\cdot {\boldsymbol {v}}=\langle u|v\rangle \,}

V {\displaystyle V\,} 是域 F {\displaystyle F\,} 上的一个线性空间,则下述定义是等价的。

定义1. 对于任意 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} ,称它们的张量积 v w V V {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\in V\otimes V\,} v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 的并矢积并将其简记为 v w {\displaystyle {\boldsymbol {vw}}\,} ,称为并矢张量。更加推广,称 V V {\displaystyle V\otimes V\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量,或者二阶反变张量。

定义2. 如果有 F {\displaystyle F\,} 上的一个线性空间 W {\displaystyle W\,} 以及双线性映射 ϕ : V × V W {\displaystyle \phi :V\times V\rightarrow W\,} 满足

则称 W {\displaystyle W\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量或二阶反变张量,把 ϕ ( v , w ) {\displaystyle \phi ({\boldsymbol {v}},{\boldsymbol {w}})\,} 记为 v w {\displaystyle {\boldsymbol {vw}}\,}

定义3. V {\displaystyle V\,} 上的并矢张量(或者二阶反变张量)这个概念可以按照下述规则来建立:

注: 所谓形式和,就是说我们既不刻意追究求和的实际含义,也关心求和的结果在哪个集合中,而只是知道这种求和满足交换律和结合律。

既然上述定义等价,我们就把 V {\displaystyle V\,} 上所有的并矢张量所构成线性空间记为 V V {\displaystyle V\otimes V\,} 。在此基础上,如果 V {\displaystyle V\,} 是一个内积空间并把 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} 的内积记为 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} (当 F = C {\displaystyle F=\mathbb {C} \,} 时,约定 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} v {\displaystyle {\boldsymbol {v}}\,} 是共轭线性的),则定义并矢张量 T {\displaystyle \mathbf {T} \,} 和矢量 v {\displaystyle {\boldsymbol {v}}\,} 的缩并 T v {\displaystyle \mathbf {T} \cdot {\boldsymbol {v}}\,} v T {\displaystyle {\boldsymbol {v}}\cdot \mathbf {T} \,} 都是 V {\displaystyle V\,} 中的向量,满足下述运算律:

设定 M {\displaystyle \mathbf {M} \,} 为一个并矢张量:

M {\displaystyle \mathbf {M} \,} 是一个二维空间的 90° 旋转算子 (rotation operator) 。它可以

相关

  • 基因改造基因工程(英语:genetic engineering,又称为遗传工程、转基因、基因修饰)是一种使用生物技术直接操纵有机体基因组、用于改变细胞的遗传物质的技术。包括了同一物种和跨物种的基
  • 平方分米平方分米(符号为dm²)是面积的公制单位(SI Unit),其定义是“边长为1分米的正方形的面积”。(1m²=100dm²) (1cm²=0.01dm²) (1mm²=0.0001dm²)平方尧米、平方佑米(Ym²) 平
  • 发现 (杂志)(2012年12月)《发现》(英语:Discover)是一本美国面向大众的科学杂志。该月刊于1980年10月由时代杂志推出。1991年出售给华特迪士尼公司,但2005年被再次出售给小鲍伯·古乔内(英语
  • 国立成功大学航空太空科技研究中心国立成功大学航空太空科技研究中心(英文: Aerospace Science and Technology Research Center, ASTRC),简称成大航太中心,隶属成大研究总中心,主要进行前瞻性基础研究、人才培
  • 赵振业赵振业(1937年11月13日-),河南原阳人,金属材料专家,中国工程院院士,曾任北京航空材料研究院副总工程师,现任北京航空材料研究院研究员、博士生导师,中国航空学会北京航空航天学会理事
  • 钱振锽钱振锽(1875年-1944年),字梦鲸,号名山,又号庸人、谪星、藏之,江苏阳湖菱溪(江苏武进、阳湖二县)人。清光绪二十九年(1903年)进士,同年闰五月,以主事分部学习,以刑部主事用。宣统元年(1909年
  • 诺努环礁诺努环礁(迪维希语:މާޅޮސްމަޑުލު އުތުރުބުރި),是马尔代夫的行政环礁,由一个环礁的南部,共71个岛屿组成(其中13个有人居住),人口为12824。这个环礁以西的水道名
  • 水分持留曲线水分持留曲线描述土壤含水量θ和土壤水势ψ之间的关系。不同类型土壤的水分持留曲线都是特异的,因此该曲线也被叫做土壤水分特征曲线。该曲线常被用来估计土壤蓄水量、对植物
  • 德尔伯特·曼德尔伯特·曼(英语:Delbert Mann,1920年1月30日-2007年11月11日)是一名美国电视和电影导演,曾担任美国导演工会主席。德尔伯特·曼出生于美国堪萨斯州劳伦斯,双亲是教授与学校老师
  • 羽根直树羽根直树(1976年8月14日-),日本著名围棋棋手,日本棋院中部本部职业九段,其父为著名棋手羽根泰正九段,其妻羽根重子(日语:羽根しげ子)为松冈秀树九段的妹妹,也是职业棋手,其女羽根彩夏亦