并矢张量

✍ dations ◷ 2025-05-20 07:12:45 #张量

在多重线性代数里,并矢张量(dyadic tensor)是一个以特别标记法写出的二阶张量,是由成对的向量并置形成的。针对这特别标记法,有一套专门计算这种表达式,类似于矩阵代数规则的方法。并矢张量的每一对向量的并置称为并矢(dyad)。两个单位基底向量的并矢积称为单位并矢(unit dyad)。标量与单位并矢的乘积就是并矢。

例如,设定两个三维向量 v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,}

其中, i {\displaystyle {\boldsymbol {i}}\,} j {\displaystyle {\boldsymbol {j}}\,} k {\displaystyle {\boldsymbol {k}}\,} ,形成了一个三维空间里的标准正交基的单位基底向量。

那么, v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 并置成为

其中, i i {\displaystyle {\boldsymbol {ii}}\,} i j {\displaystyle {\boldsymbol {ij}}\,} i k {\displaystyle {\boldsymbol {ik}}\,} 等等,都是单位并矢, v 1 w 1 i i {\displaystyle v_{1}w_{1}{\boldsymbol {ii}}\,} v 1 w 2 i j {\displaystyle v_{1}w_{2}{\boldsymbol {ij}}\,} v 1 w 3 i k {\displaystyle v_{1}w_{3}{\boldsymbol {ik}}\,} 等等,都是并矢。

并矢张量 v w {\displaystyle {\boldsymbol {vw}}\,} 也可以表达为

根据Morse与feshbach所著作的权威教科书,在三维空间里,并矢张量 A {\displaystyle \mathbf {A} \,} 是一个3×3阵列,其分量 A m n ,   m , n = 1 , 2 , 3 {\displaystyle A_{mn},\ m,n=1,2,3\,} ,当从一个坐标系变换到另外一个坐标系时,遵守协变变换(covariant transformation)的定律。

其中, A i j {\displaystyle A_{ij}'\,} 是变换后的分量。

所以,并矢张量是一个二阶协变张量。反过来说,按照这定义推广,任意二阶协变张量都是并矢张量:

应用点积,并矢张量 A {\displaystyle \mathbf {A} \,} 可以与向量 v {\displaystyle {\boldsymbol {v}}\,} 综合在一起:

其中, e m {\displaystyle {\boldsymbol {e}}_{m}\,} e n {\displaystyle {\boldsymbol {e}}_{n}\,} e {\displaystyle {\boldsymbol {e}}_{\ell }\,} ,都是标准正交基的基底向量。

注意到 ( e m e n ) e = e m δ n {\displaystyle ({\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n})\cdot {\boldsymbol {e}}_{\ell }={\boldsymbol {e}}_{m}\delta _{n\ell }\,} ;其中, δ n {\displaystyle \delta _{n\ell }\,} 是克罗内克函数。所以,

这点积运算得到的结果是一个协变向量。

并矢张量的缩并(tensor contraction)运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的点积 e m e n {\displaystyle {\boldsymbol {e}}_{m}\cdot {\boldsymbol {e}}_{n}\,} ,以方程式表达为

只成立于三维空间,并矢张量的旋转因子运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的叉积 e m × e n {\displaystyle {\boldsymbol {e}}_{m}\times {\boldsymbol {e}}_{n}\,} ,以方程式表达为

这也可以表达为 A {\displaystyle \mathbf {A} \,} 与列维-奇维塔符号 ϵ i m n {\displaystyle \epsilon _{imn}\,} 的完全缩并:

两个向量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 的并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 其实就是张量积 v w {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\,} 。 两个并矢积作形式上的相加就是并矢张量,从而并矢张量和二阶张量(严格地说,是二阶的反变张量)是同义词。力学、电动力学中常见的例子就是单位并矢张量 I = i i + j j + k k {\displaystyle {\mathcal {I}}={\boldsymbol {ii}}+{\boldsymbol {jj}}+{\boldsymbol {kk}}\,} 、转动惯量 I = ( r 2 I r r ) ρ d V {\displaystyle \mathbf {I} =\iiint (r^{2}{\mathcal {I}}-{\boldsymbol {r}}{\boldsymbol {r}})\,\rho \,dV\,} 以及马克士威应力张量等;量子力学中的角动量耦合(angular momentum coupling)理论也要用到并矢张量。

需要注意:并矢积是不可交换的,也就是说,除非两个矢量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 线性相关,否则一定有 v w w v {\displaystyle {\boldsymbol {vw}}\neq {\boldsymbol {wv}}\,}

在物理学中,并矢张量最重要的应用之一就是它和向量的缩并。对于并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 和向量 u {\displaystyle {\boldsymbol {u}}\,} 的缩并,规定

如果要求这种规定也适用于量子力学中的态矢量,在这种情况下就要特别注意每个式子右端各个向量的先后顺序:用狄拉克符号来写,则 u v = u | v {\displaystyle {\boldsymbol {u}}\cdot {\boldsymbol {v}}=\langle u|v\rangle \,}

V {\displaystyle V\,} 是域 F {\displaystyle F\,} 上的一个线性空间,则下述定义是等价的。

定义1. 对于任意 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} ,称它们的张量积 v w V V {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\in V\otimes V\,} v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 的并矢积并将其简记为 v w {\displaystyle {\boldsymbol {vw}}\,} ,称为并矢张量。更加推广,称 V V {\displaystyle V\otimes V\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量,或者二阶反变张量。

定义2. 如果有 F {\displaystyle F\,} 上的一个线性空间 W {\displaystyle W\,} 以及双线性映射 ϕ : V × V W {\displaystyle \phi :V\times V\rightarrow W\,} 满足

则称 W {\displaystyle W\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量或二阶反变张量,把 ϕ ( v , w ) {\displaystyle \phi ({\boldsymbol {v}},{\boldsymbol {w}})\,} 记为 v w {\displaystyle {\boldsymbol {vw}}\,}

定义3. V {\displaystyle V\,} 上的并矢张量(或者二阶反变张量)这个概念可以按照下述规则来建立:

注: 所谓形式和,就是说我们既不刻意追究求和的实际含义,也关心求和的结果在哪个集合中,而只是知道这种求和满足交换律和结合律。

既然上述定义等价,我们就把 V {\displaystyle V\,} 上所有的并矢张量所构成线性空间记为 V V {\displaystyle V\otimes V\,} 。在此基础上,如果 V {\displaystyle V\,} 是一个内积空间并把 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} 的内积记为 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} (当 F = C {\displaystyle F=\mathbb {C} \,} 时,约定 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} v {\displaystyle {\boldsymbol {v}}\,} 是共轭线性的),则定义并矢张量 T {\displaystyle \mathbf {T} \,} 和矢量 v {\displaystyle {\boldsymbol {v}}\,} 的缩并 T v {\displaystyle \mathbf {T} \cdot {\boldsymbol {v}}\,} v T {\displaystyle {\boldsymbol {v}}\cdot \mathbf {T} \,} 都是 V {\displaystyle V\,} 中的向量,满足下述运算律:

设定 M {\displaystyle \mathbf {M} \,} 为一个并矢张量:

M {\displaystyle \mathbf {M} \,} 是一个二维空间的 90° 旋转算子 (rotation operator) 。它可以

相关

  • 马丁乌斯·贝杰林克马丁努斯·威廉·拜耶林克(荷兰语:Martinus Willem Beijerinck,1851年3月16日-1931年1月1日),荷兰微生物学家和植物学家。他出生在阿姆斯特丹。拜耶林克就读于荷兰莱顿大学,并成为
  • 真双子叶植物真双子叶植物(学名:eudicots)是被子植物的演化支之一,由道利(Doyle)和霍顿(Hotton)在1991年提出来的,是划分被子植物门中“非木兰类双子叶植物”,也就是说花粉具有三孔的植物类群。包
  • 冯·迈尔尤利乌斯·罗伯特·冯·迈尔(德语:Julius Robert von Mayer,1814年11月25日-1878年3月20日),德国物理学家、医生,热力学的奠基人之一,热力学第一定律的发现者之一。1841年提出相当于
  • span style=color:#ffffff;“4211”br /卓越南开br /行动计划/span4211卓越南开行动计划,是2019年9月17日,南开大学建校百年前夕,南开大学校长曹雪涛提出的旨在全面提升南开大学核心竞争力和办学影响力的行动计划,即实施“文科振兴、理科提升、
  • 台湾茶艺台湾茶道指台湾独自发展形成的仪式化的泡茶与饮茶技艺,和其他东亚各地区茶仪式一样,都是以品茶为主而发展出来的特殊文化,大约在1970年代后期开始形成。茶艺一词正式定名于1970
  • 预备役美国陆军预备役司令部(英语:United States Army Reserve Command,USARC)
  • 2019冠状病毒病石川县疫情2019冠状病毒病石川县疫情(日语:石川県における2019年コロナウイルス感染症の流行/いしかわけんにおける2019ねんコロナウイルスかんせんしょうのりゅうこう),介绍2019冠状病毒病
  • 札幌雪祭札幌雪祭(日语:さっぽろ雪まつり)是每年2月上旬在北海道札幌市大通公园等地举办的雪和冰的祭典。札幌雪祭主要展示各种用雪制作的雕刻,在薄野会场等地也展示冰雕。札幌雪祭由札
  • 纳耶夫·艾尔-罗德汉纳耶夫·艾尔-罗德汉(Nayef Al-Rodhan),是一名哲学家、神经学家和地缘战略学家,英国牛津大学圣安东尼学院资深成员,瑞士日内瓦安全政策中心全球化地缘政治和跨国安全中心高级研究
  • 黎曼猜想黎曼猜想(英语:Riemann hypothesis,RH)由德国数学家波恩哈德·黎曼于1859年提出。它是数学中一个重要而又著名的未解决的问题,有“猜想界皇冠”之称,多年来它吸引了许多出色的数学