并矢张量

✍ dations ◷ 2024-12-23 04:28:15 #张量

在多重线性代数里,并矢张量(dyadic tensor)是一个以特别标记法写出的二阶张量,是由成对的向量并置形成的。针对这特别标记法,有一套专门计算这种表达式,类似于矩阵代数规则的方法。并矢张量的每一对向量的并置称为并矢(dyad)。两个单位基底向量的并矢积称为单位并矢(unit dyad)。标量与单位并矢的乘积就是并矢。

例如,设定两个三维向量 v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,}

其中, i {\displaystyle {\boldsymbol {i}}\,} j {\displaystyle {\boldsymbol {j}}\,} k {\displaystyle {\boldsymbol {k}}\,} ,形成了一个三维空间里的标准正交基的单位基底向量。

那么, v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 并置成为

其中, i i {\displaystyle {\boldsymbol {ii}}\,} i j {\displaystyle {\boldsymbol {ij}}\,} i k {\displaystyle {\boldsymbol {ik}}\,} 等等,都是单位并矢, v 1 w 1 i i {\displaystyle v_{1}w_{1}{\boldsymbol {ii}}\,} v 1 w 2 i j {\displaystyle v_{1}w_{2}{\boldsymbol {ij}}\,} v 1 w 3 i k {\displaystyle v_{1}w_{3}{\boldsymbol {ik}}\,} 等等,都是并矢。

并矢张量 v w {\displaystyle {\boldsymbol {vw}}\,} 也可以表达为

根据Morse与feshbach所著作的权威教科书,在三维空间里,并矢张量 A {\displaystyle \mathbf {A} \,} 是一个3×3阵列,其分量 A m n ,   m , n = 1 , 2 , 3 {\displaystyle A_{mn},\ m,n=1,2,3\,} ,当从一个坐标系变换到另外一个坐标系时,遵守协变变换(covariant transformation)的定律。

其中, A i j {\displaystyle A_{ij}'\,} 是变换后的分量。

所以,并矢张量是一个二阶协变张量。反过来说,按照这定义推广,任意二阶协变张量都是并矢张量:

应用点积,并矢张量 A {\displaystyle \mathbf {A} \,} 可以与向量 v {\displaystyle {\boldsymbol {v}}\,} 综合在一起:

其中, e m {\displaystyle {\boldsymbol {e}}_{m}\,} e n {\displaystyle {\boldsymbol {e}}_{n}\,} e {\displaystyle {\boldsymbol {e}}_{\ell }\,} ,都是标准正交基的基底向量。

注意到 ( e m e n ) e = e m δ n {\displaystyle ({\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n})\cdot {\boldsymbol {e}}_{\ell }={\boldsymbol {e}}_{m}\delta _{n\ell }\,} ;其中, δ n {\displaystyle \delta _{n\ell }\,} 是克罗内克函数。所以,

这点积运算得到的结果是一个协变向量。

并矢张量的缩并(tensor contraction)运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的点积 e m e n {\displaystyle {\boldsymbol {e}}_{m}\cdot {\boldsymbol {e}}_{n}\,} ,以方程式表达为

只成立于三维空间,并矢张量的旋转因子运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的叉积 e m × e n {\displaystyle {\boldsymbol {e}}_{m}\times {\boldsymbol {e}}_{n}\,} ,以方程式表达为

这也可以表达为 A {\displaystyle \mathbf {A} \,} 与列维-奇维塔符号 ϵ i m n {\displaystyle \epsilon _{imn}\,} 的完全缩并:

两个向量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 的并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 其实就是张量积 v w {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\,} 。 两个并矢积作形式上的相加就是并矢张量,从而并矢张量和二阶张量(严格地说,是二阶的反变张量)是同义词。力学、电动力学中常见的例子就是单位并矢张量 I = i i + j j + k k {\displaystyle {\mathcal {I}}={\boldsymbol {ii}}+{\boldsymbol {jj}}+{\boldsymbol {kk}}\,} 、转动惯量 I = ( r 2 I r r ) ρ d V {\displaystyle \mathbf {I} =\iiint (r^{2}{\mathcal {I}}-{\boldsymbol {r}}{\boldsymbol {r}})\,\rho \,dV\,} 以及马克士威应力张量等;量子力学中的角动量耦合(angular momentum coupling)理论也要用到并矢张量。

需要注意:并矢积是不可交换的,也就是说,除非两个矢量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 线性相关,否则一定有 v w w v {\displaystyle {\boldsymbol {vw}}\neq {\boldsymbol {wv}}\,}

在物理学中,并矢张量最重要的应用之一就是它和向量的缩并。对于并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 和向量 u {\displaystyle {\boldsymbol {u}}\,} 的缩并,规定

如果要求这种规定也适用于量子力学中的态矢量,在这种情况下就要特别注意每个式子右端各个向量的先后顺序:用狄拉克符号来写,则 u v = u | v {\displaystyle {\boldsymbol {u}}\cdot {\boldsymbol {v}}=\langle u|v\rangle \,}

V {\displaystyle V\,} 是域 F {\displaystyle F\,} 上的一个线性空间,则下述定义是等价的。

定义1. 对于任意 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} ,称它们的张量积 v w V V {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\in V\otimes V\,} v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 的并矢积并将其简记为 v w {\displaystyle {\boldsymbol {vw}}\,} ,称为并矢张量。更加推广,称 V V {\displaystyle V\otimes V\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量,或者二阶反变张量。

定义2. 如果有 F {\displaystyle F\,} 上的一个线性空间 W {\displaystyle W\,} 以及双线性映射 ϕ : V × V W {\displaystyle \phi :V\times V\rightarrow W\,} 满足

则称 W {\displaystyle W\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量或二阶反变张量,把 ϕ ( v , w ) {\displaystyle \phi ({\boldsymbol {v}},{\boldsymbol {w}})\,} 记为 v w {\displaystyle {\boldsymbol {vw}}\,}

定义3. V {\displaystyle V\,} 上的并矢张量(或者二阶反变张量)这个概念可以按照下述规则来建立:

注: 所谓形式和,就是说我们既不刻意追究求和的实际含义,也关心求和的结果在哪个集合中,而只是知道这种求和满足交换律和结合律。

既然上述定义等价,我们就把 V {\displaystyle V\,} 上所有的并矢张量所构成线性空间记为 V V {\displaystyle V\otimes V\,} 。在此基础上,如果 V {\displaystyle V\,} 是一个内积空间并把 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} 的内积记为 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} (当 F = C {\displaystyle F=\mathbb {C} \,} 时,约定 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} v {\displaystyle {\boldsymbol {v}}\,} 是共轭线性的),则定义并矢张量 T {\displaystyle \mathbf {T} \,} 和矢量 v {\displaystyle {\boldsymbol {v}}\,} 的缩并 T v {\displaystyle \mathbf {T} \cdot {\boldsymbol {v}}\,} v T {\displaystyle {\boldsymbol {v}}\cdot \mathbf {T} \,} 都是 V {\displaystyle V\,} 中的向量,满足下述运算律:

设定 M {\displaystyle \mathbf {M} \,} 为一个并矢张量:

M {\displaystyle \mathbf {M} \,} 是一个二维空间的 90° 旋转算子 (rotation operator) 。它可以

相关

  • 天路历程《天路历程》(英语通称“The Pilgrim's Progress”)是英格兰基督教作家、布道家约翰·班扬的著作,于1678年2月出版,是一首基督教的寓言诗(Allegory),后来也被认为是小说。它被认为
  • 淀粉体淀粉体(英语:Amyloplast),又称造粉体或淀粉质粒体,是高等植物细胞中的一种质粒体,又可细分为白色体的一种。主要功能为以淀粉的形式合成及储存糖类,留待需要时使用。淀粉体和叶绿体
  • Ⅳ类抗心律失常药(英语:Antiarrhythmic agents)是一类用于抑制心脏非正常节律(心律失常)的药物,这些情况例如心房颤动、心房扑动、心室性心搏过速以及心室颤动。很多人试图将此类药物
  • 刘姥姥刘姥姥,是中国古典小说《红楼梦》中的人物,是四大家族之一的王家的“偶然联宗”族亲王成之子王狗儿的岳母,王狗儿之子王板儿的外祖母。刘姥姥因生计艰难求靠贾府,在《红楼梦》前
  • 倭人倭人,简称倭,中国中原王朝对日本列岛住民的旧称。从古老的著作《山海经》就有对于倭或者倭人的记述,但记述由于时代局限性,所指地点、时间不明,有待进一步了解。到了《论衡》、《
  • 煤炭工业部中华人民共和国煤炭工业部是中华人民共和国国务院已撤销的部门。其前身是1949年成立的燃料工业部,1955年撤销燃料工业部,设立煤炭工业部、石油工业部、化学工业部。1970年6月
  • .co.co域名是ICANN为哥伦比亚共和国分配的国家及地区顶级域(ccTLD)的域名。.co域名目前由互联网信息服务机构中立星(Neustar,又译纽思塔)运营管理。.co域名可以延伸出company(公司)、c
  • 大碶站 (地铁)往邬隘站往松花江路站大碶站是浙江省宁波市一座高架轨道交通车站,为宁波轨道交通1号线二期高架三层车站。车站于2016年3月19日投入使用。大碶站位于北仑区大碶街道钱塘江路路
  • CPU-ZCPU-Z为一个可侦察CPU、存储器、主板及显卡信息的Windows平台免费软件,还拥有基准测试以及稳定度测试。CPU-Z可以列出AMD、英特尔及威盛电子等厂牌的x86 CPU详细资料,包括CPU
  • 爱丽丝梦游仙境的翻译作品路易斯·卡罗所著《爱丽丝梦游仙境》被译成了很多种文字。已知的译作及其首版和重印或再版发行日期如下: