并矢张量

✍ dations ◷ 2025-04-05 23:28:56 #张量

在多重线性代数里,并矢张量(dyadic tensor)是一个以特别标记法写出的二阶张量,是由成对的向量并置形成的。针对这特别标记法,有一套专门计算这种表达式,类似于矩阵代数规则的方法。并矢张量的每一对向量的并置称为并矢(dyad)。两个单位基底向量的并矢积称为单位并矢(unit dyad)。标量与单位并矢的乘积就是并矢。

例如,设定两个三维向量 v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,}

其中, i {\displaystyle {\boldsymbol {i}}\,} j {\displaystyle {\boldsymbol {j}}\,} k {\displaystyle {\boldsymbol {k}}\,} ,形成了一个三维空间里的标准正交基的单位基底向量。

那么, v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 并置成为

其中, i i {\displaystyle {\boldsymbol {ii}}\,} i j {\displaystyle {\boldsymbol {ij}}\,} i k {\displaystyle {\boldsymbol {ik}}\,} 等等,都是单位并矢, v 1 w 1 i i {\displaystyle v_{1}w_{1}{\boldsymbol {ii}}\,} v 1 w 2 i j {\displaystyle v_{1}w_{2}{\boldsymbol {ij}}\,} v 1 w 3 i k {\displaystyle v_{1}w_{3}{\boldsymbol {ik}}\,} 等等,都是并矢。

并矢张量 v w {\displaystyle {\boldsymbol {vw}}\,} 也可以表达为

根据Morse与feshbach所著作的权威教科书,在三维空间里,并矢张量 A {\displaystyle \mathbf {A} \,} 是一个3×3阵列,其分量 A m n ,   m , n = 1 , 2 , 3 {\displaystyle A_{mn},\ m,n=1,2,3\,} ,当从一个坐标系变换到另外一个坐标系时,遵守协变变换(covariant transformation)的定律。

其中, A i j {\displaystyle A_{ij}'\,} 是变换后的分量。

所以,并矢张量是一个二阶协变张量。反过来说,按照这定义推广,任意二阶协变张量都是并矢张量:

应用点积,并矢张量 A {\displaystyle \mathbf {A} \,} 可以与向量 v {\displaystyle {\boldsymbol {v}}\,} 综合在一起:

其中, e m {\displaystyle {\boldsymbol {e}}_{m}\,} e n {\displaystyle {\boldsymbol {e}}_{n}\,} e {\displaystyle {\boldsymbol {e}}_{\ell }\,} ,都是标准正交基的基底向量。

注意到 ( e m e n ) e = e m δ n {\displaystyle ({\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n})\cdot {\boldsymbol {e}}_{\ell }={\boldsymbol {e}}_{m}\delta _{n\ell }\,} ;其中, δ n {\displaystyle \delta _{n\ell }\,} 是克罗内克函数。所以,

这点积运算得到的结果是一个协变向量。

并矢张量的缩并(tensor contraction)运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的点积 e m e n {\displaystyle {\boldsymbol {e}}_{m}\cdot {\boldsymbol {e}}_{n}\,} ,以方程式表达为

只成立于三维空间,并矢张量的旋转因子运算,将每一个并置 e m e n {\displaystyle {\boldsymbol {e}}_{m}{\boldsymbol {e}}_{n}\,} ,替换为两个单位基底向量的叉积 e m × e n {\displaystyle {\boldsymbol {e}}_{m}\times {\boldsymbol {e}}_{n}\,} ,以方程式表达为

这也可以表达为 A {\displaystyle \mathbf {A} \,} 与列维-奇维塔符号 ϵ i m n {\displaystyle \epsilon _{imn}\,} 的完全缩并:

两个向量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 的并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 其实就是张量积 v w {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\,} 。 两个并矢积作形式上的相加就是并矢张量,从而并矢张量和二阶张量(严格地说,是二阶的反变张量)是同义词。力学、电动力学中常见的例子就是单位并矢张量 I = i i + j j + k k {\displaystyle {\mathcal {I}}={\boldsymbol {ii}}+{\boldsymbol {jj}}+{\boldsymbol {kk}}\,} 、转动惯量 I = ( r 2 I r r ) ρ d V {\displaystyle \mathbf {I} =\iiint (r^{2}{\mathcal {I}}-{\boldsymbol {r}}{\boldsymbol {r}})\,\rho \,dV\,} 以及马克士威应力张量等;量子力学中的角动量耦合(angular momentum coupling)理论也要用到并矢张量。

需要注意:并矢积是不可交换的,也就是说,除非两个矢量 v , w {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\,} 线性相关,否则一定有 v w w v {\displaystyle {\boldsymbol {vw}}\neq {\boldsymbol {wv}}\,}

在物理学中,并矢张量最重要的应用之一就是它和向量的缩并。对于并矢积 v w {\displaystyle {\boldsymbol {vw}}\,} 和向量 u {\displaystyle {\boldsymbol {u}}\,} 的缩并,规定

如果要求这种规定也适用于量子力学中的态矢量,在这种情况下就要特别注意每个式子右端各个向量的先后顺序:用狄拉克符号来写,则 u v = u | v {\displaystyle {\boldsymbol {u}}\cdot {\boldsymbol {v}}=\langle u|v\rangle \,}

V {\displaystyle V\,} 是域 F {\displaystyle F\,} 上的一个线性空间,则下述定义是等价的。

定义1. 对于任意 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} ,称它们的张量积 v w V V {\displaystyle {\boldsymbol {v}}\otimes {\boldsymbol {w}}\in V\otimes V\,} v {\displaystyle {\boldsymbol {v}}\,} w {\displaystyle {\boldsymbol {w}}\,} 的并矢积并将其简记为 v w {\displaystyle {\boldsymbol {vw}}\,} ,称为并矢张量。更加推广,称 V V {\displaystyle V\otimes V\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量,或者二阶反变张量。

定义2. 如果有 F {\displaystyle F\,} 上的一个线性空间 W {\displaystyle W\,} 以及双线性映射 ϕ : V × V W {\displaystyle \phi :V\times V\rightarrow W\,} 满足

则称 W {\displaystyle W\,} 中的元素为 V {\displaystyle V\,} 上的并矢张量或二阶反变张量,把 ϕ ( v , w ) {\displaystyle \phi ({\boldsymbol {v}},{\boldsymbol {w}})\,} 记为 v w {\displaystyle {\boldsymbol {vw}}\,}

定义3. V {\displaystyle V\,} 上的并矢张量(或者二阶反变张量)这个概念可以按照下述规则来建立:

注: 所谓形式和,就是说我们既不刻意追究求和的实际含义,也关心求和的结果在哪个集合中,而只是知道这种求和满足交换律和结合律。

既然上述定义等价,我们就把 V {\displaystyle V\,} 上所有的并矢张量所构成线性空间记为 V V {\displaystyle V\otimes V\,} 。在此基础上,如果 V {\displaystyle V\,} 是一个内积空间并把 v , w V {\displaystyle {\boldsymbol {v}},{\boldsymbol {w}}\in V\,} 的内积记为 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} (当 F = C {\displaystyle F=\mathbb {C} \,} 时,约定 v w {\displaystyle {\boldsymbol {v}}\cdot {\boldsymbol {w}}\,} v {\displaystyle {\boldsymbol {v}}\,} 是共轭线性的),则定义并矢张量 T {\displaystyle \mathbf {T} \,} 和矢量 v {\displaystyle {\boldsymbol {v}}\,} 的缩并 T v {\displaystyle \mathbf {T} \cdot {\boldsymbol {v}}\,} v T {\displaystyle {\boldsymbol {v}}\cdot \mathbf {T} \,} 都是 V {\displaystyle V\,} 中的向量,满足下述运算律:

设定 M {\displaystyle \mathbf {M} \,} 为一个并矢张量:

M {\displaystyle \mathbf {M} \,} 是一个二维空间的 90° 旋转算子 (rotation operator) 。它可以

相关

  • 吕后吕雉(?-前180年8月18日),字娥姁,汉高祖刘邦皇后。通称吕后,或称汉高后、吕太后、高皇后。东汉时光武帝改薄太后为高皇后,吕后为高后。山东单父(今单县)人,为汉高祖刘邦任亭长时所娶元配
  • 股间性爱股交(英语:intercrural sex或femoral/interfemoral sex),是非插入式性行为之一,男性将他的阴茎放置在他伴侣的大腿内侧之间,彼此胯部进行推移以磨蹭之。海特(Shere Hite)曾在1976年
  • 二硫化铪二硫化铪是一种无机化合物,化学式为HfS2,是一种层状的二硫化物。通过胶带法(参见石墨烯的制备)可以将其剥离数个原子层的厚度,用于制造场效应晶体管。液相剥离法也可高产率地得到
  • 拟苇科参见正文拟苇科也叫假芦苇科,只有1属—拟苇属()共两种,分布在从马来西亚西部至萨摩亚、夏威夷一带的太平洋岛屿上。本科植物我为多年生高大草本,类似芦苇,可达5米高,叶大,长达1米;果
  • 羟基氧化铝羟基氧化铝是一种无机化合物,化学式为AlO(OH)。它在自然界中以勃姆石和硬水铝石(英语:diaspore)两种矿物的形式存在。硝酸铝和水合肼在pH≈5时于200℃发生水热反应,可以制得γ-Al
  • 拿骚的玛丽拿骚的玛丽(德语:,1825年1月29日-1902年3月24日),维德亲王妃,拿骚公爵威廉的女儿、卢森堡大公阿道夫的妹妹。1842年,玛丽与维德亲王赫尔曼(英语:Hermann, Prince of Wied)结婚,两人共有2
  • 天堂五分钟)《天堂五分钟》(英语:)是一部于2009年上映的北爱尔兰剧情片,由西蒙·范霍文执导。 1975年爱尔兰情势动荡,爱尔兰共和军、阿尔斯特自愿者力量彼此仇视;17岁少年阿利斯泰尔杀了不同
  • 中央文化宫 (乌兰巴托)中央文化宫,是蒙古国首都乌兰巴托苏赫巴托尔广场东侧的一座大型综合性文化建筑。中央文化宫位于苏赫巴托尔广场东侧靠北。其西北侧是国家宫。其南侧是蒙古国家古典艺术剧院。
  • 韩明淑韩明淑(朝鲜语:한명숙/韓明淑 ,1944年3月24日-),韩国国会议员(议席位于京畿道一山区)、韩国妇女运动领导人物,第37任韩国总理。她也是韩国建国以来的第一位女性总理。韩明淑生于平
  • 木高木高(1515年2月5日-1568年11月29日),字守贵,号端峯,别号九江,纳西族名阿公阿目(A-kung A-mu),丽江第十五代土司,官拜丽江知府。他也是一位儒学学者,被后世称为“木氏六公”之一。木高是