双β衰变

✍ dations ◷ 2025-04-26 22:15:15 #原子核物理学,放射性,粒子物理学

在核物理学上,双β衰变(又称双重β衰变,英语:double beta decay)是一种放射性衰变,当中在原子核内的两颗质子同时变换成两颗中子,反之亦然。跟单β衰变一样,这个过程能使原子更接近最优的质子中子比。作为这种变换的结果,原子核射出两枚能被侦测的β粒子,即是电子或正电子。

双β衰变共有两种:“寻常”双β衰变和“无中微子”双β衰变。寻常双β衰变在多种同位素中都被观测到,过程中衰变核射出两电子和两反电中微子。而无中微子双β衰变则是一项假想过程,从未曾被观测过,过程中只会射出电子。

双β衰变这个概念最初由玛丽亚·格佩特-梅耶于1935年提出。埃托雷·马约拉纳于1937年证明了若中微子为其自身的反粒子,则β衰变理论的所有结果不变,因此有这种特性的粒子现在被称为马约拉纳粒子温德尔·弗里(英语:Wendell H. Furry)于1939年提出若中微子为马约拉纳粒子的话,则双β衰变能够在不射出任何中微子的情况下进行,这个过程现在被称为无中微子双β衰变。现时仍未知道中微子是否马约拉纳粒子,亦未知道无中微子双β衰变是否存在于自然之中。

弱相互作用的宇称破缺在1930至40年代尚未被发现,因此造成了相关计算指出无中微子双β衰变的出现率应该要比寻常双β衰变要高得多。半衰期的预测值在1015–16年的数量级上。早在1948年,爱德华·法厄曼(英语:Edward L. Fireman)在用盖革计数器直接量度锡-124的半衰期时就第一次尝试了在实验中观测这个过程。整个1960年代的放射性测量实验都得出反面结果或伪正面结果,这些结果在后来的实验都未能重现。物理学家于1950年在使用地球化学方法第一次成功量度到碲-130的双β衰变半衰期为1.4×1021年,与现代的测量值相当接近。

在弱相用作用的V−A性质确立的1956年后,无中微子双β衰变的半衰期就变得很明显地应该要比寻常β衰变要长得多。尽管实验技巧在1960至70年代得到重大的跃进,但是双β衰变要在1980年代才能在实验室观测得到。实验只成功确立了半衰期的下限约在1021年。与此同时,地球化学实验探测到了硒-82和碲-128的双β衰变。

最早在实验室成功观测到双β衰变的是加州大学尔湾分校迈克尔·莫伊(Michael Moe)的团队,他们于1987年到硒-82的这个过程。自此以后,不少实验都成功观测到其他同位素的寻常双β衰变。但上述实验中没有一个能为无中微子过程提供正面的结果,因此其半衰期下限被提高至约为1025年。地球化学实验继续于整个1990年代发展,在数种同位素中得出了正面的结果。双β衰变是已知放射性衰变中最罕见的:至2012年为止只有在12种同位素中观测到这个过程(包括2001年所观测到钡-130的双电子捕获(英语:double electron capture)),而所有已知双β衰变过程的平均寿命都在1018年以上(见下表)。

在双β衰变中,原子核内的两中子变换成质子,并射出两电子及两电中微子。这个过程可被视为两次负β衰变的总和。要使(双)β衰变变得可行,衰变所产生原子核的束缚能必须比原来的大。对某些像锗-76的原子核而言,原子数高一的原子核有着较低的束缚能,因此阻止了β衰变的发生。然而,原子数高二的原子核(硒-76)则有较大的束缚能,因此可以发生双β衰变。

对某些原子而言,这个过程把两个质子转换成中子,射出两电子中微子并吸收两轨道电子(双电子捕获)。若衰变物与衰变产物的原子质量差超过1.022 MeV/c2(电子质量的两倍)的话,还可以发生另一衰变,捕获一轨道电子并射出一正电子。当质量差超过2.044 MeV/c2(电子质量的四倍)时,可以射出两正电子。但这些理论衰变分支仍未被观测到。

能发生双β衰变的自然产生同位素共有35种。若单β衰变因能量守恒被禁止的话,实际上就能够观测到双β衰变。质子数及中子数皆为偶数的同位素有可能有这种情况,这是因为自旋耦合所导致的较高稳定性,可由液滴模型质量公式的配对项得知。

不少同位素在理论上都能够发生双β衰变。在大部分的个案中,双β衰变实在太罕有了,以致几乎不可能从背景辐射下观测到。然而,铀-238(同时是α射线发射体)的双β衰变可经由放射化学来量度。下表的钙-48(英语:Calcium-48)和锆-96理论上都能出现单β衰变,但都被严重抑制,因此从未被观测过。

实验上观测到出现双中微子双β衰变的同位素共有11种。下表含有截至2012年12月半衰期的最新数据。

注意:上表中两个误差的第一个为统计误差,而第二个则为系统误差。

过程中射出两中微子(或反中微子)的叫双中微子双β衰变。若中微子为马约拉纳粒子(意思是反中微子和中微子实际上是同一种粒子),且最少一种中微子的质量非零(已由中微子振荡实验确立),则无中微子双β衰变有可能发生。在最简单的理论论述(又称轻中微子交换)中,两中微子互相湮灭,这相等于核子吸收了由另一核子射出的中微子。

右图中的中微子为虚粒子。最终态中只有两电子,电子的总动能会大约等于原子核开始及结束时的束缚能差额(其余则归入原子核的后座力)。两电子几乎是背对背发射的。这个过程的衰变率近似值可由下式所得:

其中 G {\displaystyle G} 二体相空间因子, M {\displaystyle M} 为核矩阵元,mββ为电中微子的有效马约拉纳质量,由下式所得

在这个式子中,mi为中微子质量(第i个质量本征态),Uei为轻子混合矩阵PMNS矩阵的矩阵元。因此观测无中微子双β衰变除了是确认中微子的马约拉纳特性之外,还可以为绝对中微子质量尺度、中微子质量级列和PMNS矩阵的马约拉纳相提供信息。

这个过程的深层意义从“黑箱定理”而来,即是说观测到无中微子双β衰变代表最少一个中微子是马约拉纳粒子,与这个过程是否由中微子交换所产生无关。

虽然早期实验声称发现了无中微子双β衰变,但是现代搜索已经设立了对之前结果不利的极限。近期论文中锗和氙的下限并没有指出任何有关无中微子衰变的迹象。

海德堡-莫斯科协作研究组织最初发表了锗-76内无中微子双β衰变的极限。然后组织的一些成员声称他们在2001年探测到无中微子双β衰变这个声称饱受组织外物理学家和组织内其他成员的批评。同样的作者在2006年发表了较深入的估计值,指出半衰期为2.3×1025年。 物理学家期望精度更高的多项2014年实验能解决这项争议。

截至2014年,锗-76探测器GERDA已经达到甚低的背景,得出21.6 kg*yr曝光的半衰期极限为2.1×1025年。探测器IGEX和HDM的数据则把极限增加至3×1025年,并在高确信度下剔除了探测到的可能性。氙-136的探测器Kamland-Zen 和EXO-200得出的极限为2.6×1025年。氙-136的结果使用了最新的核矩阵元,它们也对海德堡-莫斯科的声称不利。

相关

  • FBI联邦调查局(英语:Federal Bureau of Investigation),简称联调局(FBI),前身是调查局(Bureau of Investigation,简称BOI),是美国司法部的主要执法、情报机构及调查单位,也是美国联邦政府最
  • 大陆架大陆架,又称陆架、棚或陆棚,是大陆沿岸土地在海面下向海洋的延伸,可以说是被海水所覆盖的大陆。在过去的冰川期,由于海平面下降,大陆架常常露出海面成为陆地、陆桥;在间冰期(冰川消
  • 马来西亚2019冠状病毒病马来西亚行动管制令(部分传媒译为“限制活动令”)是指2020年3月16日,马来西亚联邦政府面对2020年爆发的新型冠状病毒疫情(COVID-19)的反应措施,而在全国实施了“限
  • 纳米比亚2019冠状病毒病纳米比亚疫情,介绍在2019新型冠状病毒疫情中,在纳米比亚发生的情况。2020年3月14日,纳米比亚宣布首次确诊两例新冠肺炎病例。患者为一对情侣,来自西班牙,11日进入
  • 特纳迈克尔·S·特纳(英语:Michael S. Turner,1949年7月29日-),美国理论宇宙学家,1998年提出了暗能量(dark energy)这一术语。迈克尔·特纳1971年获得加州理工学院物理学专业理学士学位。
  • 科学园区台湾有许多科学园区,其中新竹科学园区、中部科学园区及南部科学工业园区是由中华民国科技部所主管,另外在各地也有许多的科技园区、科学园区及软件园区。台湾设立科学园区的宗
  • 不饱和醛酮α,β-不饱和羰基化合物即共轭的不饱和羰基化合物,包括醛、酮、酯、腈、(硝基化合物)等,但一般指α,β-不饱和醛酮,简称不饱和醛酮。它们在结构上有一个共同的特点,也就是含有一个
  • 时分多路复用时分多路复用(Time-Division Multiplexing,TDM)是一种数字或者模拟(较罕见)的多路复用技术。使用这种技术,两个以上的信号或数据流可以同时在一条通信线路上传输,其表现为同一通信
  • 昌国县昌国县是曾经存在的县。现今有如下地区曾经使用“昌国县”作为地名。
  • 牛痘牛痘(英语:cowpox)是发生在牛身上的一种传染病,它的症状通常是在母牛的乳房部位出现局部溃疡。牛痘由牛痘病毒引发,而该病毒是天花病毒的近亲。如果挤奶工的皮肤上有伤口,该病会透