特性函数

✍ dations ◷ 2024-07-03 08:45:25 #特性函数
在概率论中,任何随机变量的特征函数(缩写:ch.f,复数形式:ch.f's)完全定义了它的概率分布。在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量:其中t是一个实数,i是虚数单位,E表示期望值。用矩母函数MX(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X在虚数轴上求得的矩母函数。与矩母函数不同,特征函数总是存在。如果FX是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出:在概率密度函数fX存在的情况下,该公式就变为:如果X是一个向量值随机变量,我们便取自变量t为向量,tX为数量积。R或Rn上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。一个对称概率密度函数的特征函数(也就是满足fX(x) = fX(-x))是实数,因为从x>0所获得的虚数部分与从x<0所获得的相互抵消。勒维连续定理说明,假设 ( X n ) n = 1 ∞ {displaystyle (X_{n})_{n=1}^{infty }} 为一个随机变量序列,其中每一个 X n {displaystyle X_{n}} 都有特征函数 φ n {displaystyle varphi _{n}} ,那么它依分布收敛于某个随机变量 X {displaystyle X} :如果且 φ ( t ) {displaystyle varphi (t)} 在   t = 0 {displaystyle t=0} 处连续, φ {displaystyle varphi } 是 X {displaystyle X} 的特征函数。勒维连续定理可以用来证明弱大数定律。在累积概率分布函数与特征函数之间存在双射。也就是说,两个不同的概率分布不能有相同的特征函数。给定一个特征函数φ,可以用以下公式求得对应的累积概率分布函数F:一般地,这是一个广义积分;被积分的函数可能只是条件可积而不是勒贝格可积的,也就是说,它的绝对值的积分可能是无穷大。任意一个函数 φ {displaystyle varphi } 是对应于某个概率律 μ {displaystyle mu } 的特征函数,当且仅当满足以下三个条件:特征函数对于处理独立随机变量的函数特别有用。例如,如果X1、X2、……、Xn是一个独立(不一定同分布)的随机变量的序列,且其中ai是常数,那么Sn的特征函数为:特别地, φ X + Y ( t ) = φ X ( t ) φ Y ( t ) {displaystyle varphi _{X+Y}(t)=varphi _{X}(t)varphi _{Y}(t)} 。这是因为:注意我们需要 X {displaystyle X} 和 Y {displaystyle Y} 的独立性来确立第三和第四个表达式的相等性。另外一个特殊情况,是 a i = 1 / n {displaystyle a_{i}=1/n} 且 S n {displaystyle S_{n}} 为样本平均值。在这个情况下,用 X ¯ {displaystyle {overline {X}}} 表示平均值,我们便有:Oberhettinger (1973) 提供的特征函数表.由于连续定理,特征函数被用于中心极限定理的最常见的证明中。特征函数还可以用来求出某个随机变量的矩。只要第n个矩存在,特征函数就可以微分n次,得到:例如,假设 X {displaystyle X} 具有标准柯西分布。那么 φ X ( t ) = e − | t | {displaystyle varphi _{X}(t)=e^{-|t|}} 。它在 t = 0 {displaystyle t=0} 处不可微,说明柯西分布没有期望值。另外,注意到 n {displaystyle n} 个独立的观测的样本平均值 X ¯ {displaystyle {overline {X}}} 具有特征函数 φ X ¯ ( t ) = ( e − | t | / n ) n = e − | t | {displaystyle varphi _{overline {X}}(t)=(e^{-|t|/n})^{n}=e^{-|t|}} ,利用前一节的结果。这就是标准柯西分布的特征函数;因此,样本平均值与总体本身具有相同的分布。特征函数的对数是一个累积量母函数,它对于求出累积量是十分有用的;注意有时定义累积量母函数为矩母函数的对数,而把特征函数的对数称为第二累积量母函数。具有尺度参数θ和形状参数k的伽玛分布的特征函数为:现在假设我们有:其中X和Y相互独立,我们想要知道X + Y的分布是什么。X和Y特征函数分别为:根据独立性和特征函数的基本性质,可得:这就是尺度参数为θ、形状参数为k1 + k2的伽玛分布的特征函数,因此我们得出结论:这个结果可以推广到n个独立、具有相同尺度参数的伽玛随机变量:如果 X {displaystyle X} 是一个多元随机变量,那么它的特征函数定义为:这里的点表示向量的点积,而向量 t {displaystyle t} 位于 X {displaystyle X} 的对偶空间内。用更加常见的矩阵表示法,就是:如果 X ∼ N ( 0 , Σ ) {displaystyle Xsim N(0,Sigma ),} 是一个平均值为零的多元高斯随机变量,那么:其中 | Σ | {displaystyle |Sigma |} 表示正定矩阵 Σ的行列式。如果 X {displaystyle X} 是一个矩阵值随机变量,那么它的特征函数为:在这里, T r ( ⋅ ) {displaystyle mathrm {Tr} (cdot )} 是迹函数,   X T {displaystyle XT} 表示 T {displaystyle T} 与 X {displaystyle X} 的矩阵乘积。由于矩阵XT一定有迹,因此矩阵X必须与矩阵T的转置的大小相同;因此,如果X是m × n矩阵,那么T必须是n × m矩阵。注意乘法的顺序不重要( X T ≠ T X {displaystyle XTneq TX} 但   t r ( X T ) = t r ( T X ) {displaystyle tr(XT)=tr(TX)} )。矩阵值随机变量的例子包括威沙特分布和矩阵正态分布。相关概念有矩母函数和概率母函数。特征函数对于所有概率分布都存在,但矩母函数不是这样。特征函数与傅里叶变换有密切的关系:一个概率密度函数 p ( x ) {displaystyle p(x)} 的特征函数是 p ( x ) {displaystyle p(x)} 的连续傅里叶变换的共轭复数(按照通常的惯例)。其中 P ( t ) {displaystyle P(t)} 表示概率密度函数 p ( x ) {displaystyle p(x)} 的连续傅里叶变换。类似地,从 φ X ( t ) {displaystyle varphi _{X}(t)} 可以通过傅里叶逆变换求出 p ( x ) {displaystyle p(x)} :确实,即使当随机变量没有密度时,特征函数仍然可以视为对应于该随机变量的测度的傅里叶变换。

相关

  • ICD-9编码列表 (140–239)医学导航: 肿瘤基因/标志肿瘤/同名/附瘤药物 (L1i/1e/V03)Template:Endocrine gland neoplasia Template:Lymphoid malignancy Template:Myeloid malignancy
  • 诺齐克罗伯特·诺齐克(Robert Nozick, 1938年11月16日-2002年1月23日)是美国的哲学家,也是哈佛大学的教授。1938年生于纽约的布鲁克林区,父亲是来自俄罗斯的犹太人企业家。他毕业于哥伦
  • 玛都丽·荻西特玛都丽·荻西特 (马拉地语: माधुरी दीक्षित,英语:Madhuri Dixit,1967年5月15日-,也称玛都丽·荻西特·尼尼)是活跃在二十世纪末期至本世纪初的印度著名电影演员。她一
  • 首陀罗首陀罗(梵语:शूद्र,Śūdra),又译戍陀罗,是印度教的第四个种姓,最早可以被追溯到《梨俱吠陀》的原人歌,在《摩奴法论》中也有他们的特殊规定。这个种姓由农民、高级佣人和工匠
  • 泰因赛德泰恩赛德(英语:Tyneside)是英国的一个都市区,位于英格兰东北部,中心都市是泰恩河畔纽卡素。据2011年英国人口普查,泰恩赛德有人口774,891 人。而根2013年估计,泰恩赛德有人口832,46
  • 粗放农业粗放农业(extensive agriculture)是指单位面积土地上,相对于集约农业而言,投入较低的劳力、资本的农业经营方式。影响粗放农业出现的几个因素:
  • 薛禹群薛禹群(1931年11月2日-),江苏无锡人,中国水文地质学家,南京大学教授1952年毕业于唐山工学院,1957年长春地质学院研究生毕业。1999年当选为中国科学院院士。
  • 肌肉营养不良肌肉萎缩症(肌营养不良症,英语:Muscular dystrophy, MD),指一组损坏人体肌肉的遗传性疾病。肌营养不良症表现为进行性骨骼肌萎缩,肌肉蛋白质缺失,和肌肉细胞或组织的死亡。有九种疾
  • 竞速滑冰竞速滑冰在1924年奥运成为正式比赛项目。• = 正式项目, (d) = 表演项目The following table shows when events were contested at each Games. Women's events were demo
  • 基督教科学派基督科学教会(Christian Science),亦译为基督教科学会、基督教科学派,1879年由玛丽·贝克·艾迪创立,总教堂(或称母教堂)位于美国马萨诸塞州波士顿。此教派的教义主要来自她所著的