超冷原子是将原子保持在一个极低温的状态(接近绝对零度,0K),一般来说其典型温度在百纳开左右。在这样的低温状态下,原子的量子力学性质变得十分重要。要到达如此低的温度,则需要好几种技术的配合使用。首先将原子囚禁于磁光阱中,并用激光冷却预冷。再利用蒸发制冷,以达到更低的温度。
当原子被降到足够低的温度时,他们将会处于一种新的量子物态。对于玻色型原子气会产生玻色-爱因斯坦凝聚;对于费米型原子气,则形成简并费米气。由于原子间存在相互作用,实际上绝大多数原子在低温下的基态是形成固体(除了He3和He4,由于较大的零点能,常压下始终为液体),因此这类原子气实际上处于亚稳态。但是当原子气足够稀薄,碰撞概率足够小,这种亚稳态可以比较长时间的存在。无论是费米子还是玻色子,如果原子间相互为吸引作用,上述原子气所描述的状态将会失稳而塌缩。对于费米型气体,某种原子间的吸引作用可能形成类似超导当中的库伯(Cooper)对,而形成新的基态。
实验上,冷原子被用于研究玻色-爱因斯坦凝聚(BEC),超流,量子磁性,多体系统,BCS机制,BCS-BEC连续过渡等,对理解量子相变有重要意义。冷原子也被用于研究人工合成规范场,使得人们可以在实验室中模拟规范场,从而在凝聚态体系中辅助验证粒子物理的理论(而不需要巨大的加速器)。冷原子可以被精确的操控,可以用于研究量子信息学,冷原子系统是实现量子计算的众多方案中非常有前景的之一。