杠杆原理

✍ dations ◷ 2025-04-25 01:29:40 #杠杆原理
在力学里,典型的杠杆(lever)是置放连结在一个支撑点上的硬棒,这硬棒可以绕着支撑点旋转。当杠杆静力平衡时,其动力乘以动力臂等于阻力乘以阻力臂,可以透过改变动力臂或阻力臂长度,使输入力放大或缩小,有着相当实用的功能,古希腊人将杠杆归类为简单机械。早在旧石器时代晚期,古人就知道使用杠杆的原理来制作投枪器。 考古学者认为,在古埃及4500多年前的金字塔时期,工人使用杠杆来移动、抬举重量超过100英吨的方尖碑。 中国战国时期,墨子在所著作的《墨子》一书中,提到应用杠杆的概念。大约在公元前330年,亚里斯多德在著作《机械问题》(《Mechanical Problems》)里,对于杠杆有详细的论述,并且基本而言使用虚功的现代概念推导出杠杆原理。公元前3世纪,古希腊科学家阿基米德在著作《论平面图形的平衡》里用几何方法推导出杠杆原理,并且宣称:“给我一个支点,我就可以撬动整个地球。”由于杠杆内部有一点为固定点,杠杆只能绕着这固定点做旋转运动。相对于这一点,杠杆不能做平移运动。理想杠杆不会耗散或储存能量,也就是说,支点与硬棒之间不会出现任何摩擦损耗,硬棒是一种刚体,不会被弯曲,发生形变。注意到硬棒不一定是直棒。弯曲的硬棒形成的杠杆称为“曲杠杆”。对于理想杠杆案例,输入杠杆的功率等于杠杆输出的功率。输出力与输入力之间的比率,等于这两个作用力分别与支点之间垂直距离的反比率,称这相等式为“杠杆原理”,以方程表达:或者,定义力矩 M {displaystyle M} 为其中, F {displaystyle F} 是作用力, D {displaystyle D} 是作用力与支点之间的垂直距离。则输入力矩等于输出力矩:杠杆原理表明,当静力平衡时,动力乘以动力臂等于阻力乘以阻力臂:靠着比较动力臂、阻力臂的长度,可以将杠杆分为三类:另外一种分类法式依照动力点、阻力点、支点在杠杆的相对位置来分类。第一类杠杆的动力点、阻力点分别在支点的两边。例如,铁撬、剪刀、跷跷板、天平、尖嘴钳。第二类杠杆的动力点、支点分别在阻力点的两边。例如,独轮车、胡桃夹子。这是一种省力杠杆,可以施加较小的力量来移动较重的物体,但是动力的位移较长。第三类杠杆的阻力点、支点分别在动力点的两边。例如,镊子、扫把。这是一种费力杠杆,可以节省动力的位移。杠杆是可以绕着支点旋转的硬棒。当外力作用于杠杆内部任意位置时,杠杆的响应是其操作机制;假若外力的作用点是支点,则杠杆不会出现任何响应。假设杠杆不会耗散或储存能量,则杠杆的输入功率必等于输出功率。当杠杆绕着支点呈匀角速度旋转运动时,离支点越远,则移动速度越快,离支点越近,则移动速度越慢,由于功率等于作用力乘以速度,离支点越远,则作用力越小,离支点越近,则作用力越大。机械利益是阻力与动力之间的比率,或输出力与输入力之间的比率。假设动力臂 D 1 {displaystyle D_{1}} 、阻力臂 D 2 {displaystyle D_{2}} 分别为动力点、阻力点与支点之间的距离,动力 F 1 {displaystyle F_{1}} 、阻力 F 2 {displaystyle F_{2}} 分别作用于动力点、阻力点。则机械利益 M A {displaystyle MA} 为通常在学习杠杆的初级理论时,会聚焦于输入力和输出力由于虚位移而做的虚功。虚位移可以定义为物体的移动速度乘以虚时间。这样定义导致计算的物理量是功率,而不是功。这种方法有一个实在优点:在研究机械工程学或机构学时,功率是主要计算的物理量。使用这种方法来对杠杆做静力分析,就如同对于车子的传动系统,或机械手臂做静力分析,它们的机械利益的计算方式完全一样。复式杠杆(compound lever)是一组耦合在一起的杠杆,前一个杠杆的阻力会紧接地成为后一个杠杆的动力。几乎所有的磅秤都会应用到某种复式杠杆机制。其它常见例子包括指甲剪、钢琴键盘。1743年,英国伯明翰发明家约翰·外艾特(英语:John Wyatt)在设计计重秤时,贡献出复式杠杆的点子。他设计的计重秤一共使用了四个杠杆来传输负载。负:衡木加重焉而不挠,极胜重也。右校交绳,无加焉而挠,极不胜重也。衡加重于其一旁必捶,权重相若也。相衡则本短标长,两加焉重相若,则标必下,标得权也。挈:有力也,引无力也。不正所挈之止于施也,绳制挈之也,若以锥刺之。挈,长重者下,短轻者上,上者愈得,下下者愈亡。绳直权重相若,则正矣。收,上者愈丧,下者愈得,上者权中尽,则遂。

相关

  • 白细胞介素白细胞介素或介白素(interleukin)是一组细胞因子(分泌的信号分子)。最早发现在白细胞中表达作为细胞间信号传递的手段。实际上,白细胞介素可以由多种细胞产生。免疫系统的功能,在
  • 印度艾滋病情况根据印度国家艾滋病控制组织(英语:National AIDS Control Organisation)的数据,2013年后天免疫缺乏症候群在印度的患病率为0.27,估计印度有239万人患有艾滋病,而英国医学期刊在201
  • 弓虫症弓虫症是一种由弓形虫造成的寄生虫病,成年感染一般无症状。弓虫症常会伴随持续几周或几月之久的类似于流感的症状(英语:flu-like illness),例如肌肉疼痛、淋巴结触痛。一小部分人
  • 安吉县安吉县在中国浙江省西北部、西苕溪流域,是湖州市下辖的一个县。以产竹闻名,有“中国竹乡”之称。安吉县境内有亚洲第一的天荒坪抽水蓄能电站。下辖8个镇、3个乡、4个街道:递铺
  • 利亚利亚是《希伯来圣经》里以色列族长雅各的第一位妻子,拉班的大女儿,参见《创世记》。雅各喜欢拉班的小女儿拉结,拉班出门谎称有女儿拉结,外面的人问是否有女儿利亚,拉班不语,为娶拉
  • 雨天雨部,为汉字索引中的部首之一,康熙字典214个部首中的第一百七十三个(八划的则为第七个)。就繁体和简体中文中,雨部归于八划部首。雨部只以上方为部字。且无其他部首可用者将部首
  • 额窦额窦位于眉弓,极少对称,且在其之间的鼻中隔也时常会遍向中线的某一侧。额窦平均的尺寸如下:长 3 公分、宽 2.5 公分、厚 2.5 公分。各个额窦都会经由穿过筛骨迷路前端的额鼻管
  • 疏密波纵波,又称为疏密波,是指在传播介质中质点的振动方向与波的传播方向平行的一类波,形成的波是疏密相间的波形。非电磁波的纵波的例子有声波(压力的传递、粒子位移、弹性物质中粒子
  • 会议旅游会议旅游在进行会议以后或者以前而进行的旅游活动,可以是在本地区会议以前而进行的奖励旅游而出境旅游或者是区域旅游,也可以是在旅游目的地会议前或者会议后进行的旅游活动,会
  • 最高行政法院最高行政法院是最高级的行政法院,可以指: