斐波那契双曲函数

✍ dations ◷ 2025-04-26 11:54:44 #特殊函数

斐波那契双曲函数(Fibonoacci hyperbolic functions)是一个与黄金分割有关的特殊函数

定义如下:

s F h ( x ) = 2 s i n h ( 2 x α ) 5 {\displaystyle sFh(x)={\frac {2*sinh(2*x*\alpha )}{\sqrt {5}}}}

其中 α {\displaystyle \alpha } 是黄金分割的对数:

α = l n ( ϕ ) = l n 1 + 5 2 = 0.4812118246 {\displaystyle \alpha =ln(\phi )=ln{\frac {1+{\sqrt {5}}}{2}}=0.4812118246}


c F h ( x ) = 2 s i n h ( 2 x α ) 5 {\displaystyle cFh(x)={\frac {2*sinh(2*x*\alpha )}{\sqrt {5}}}}



t F h ( x ) = f s h ( x ) f c h ( x ) {\displaystyle tFh(x)={\frac {fsh(x)}{fch(x)}}}





a r c s F h ( z ) = 1 / 2 z 5 ( 5 + 1 ) H e u n C ( 0 , 1 / 2 , 0 , 0 , 1 / 4 , 5 z 2 5 z 2 + 4 ) 1 5 z 2 + 4 ( 5 1 ) 1 ( H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) ) 1 {\displaystyle arcsFh(z)=1/2\,z{\sqrt {5}}\left({\sqrt {5}}+1\right){\it {HeunC}}\left(0,1/2,0,0,1/4,5\,{\frac {{z}^{2}}{5\,{z}^{2}+4}}\right){\frac {1}{\sqrt {5\,{z}^{2}+4}}}\left({\sqrt {5}}-1\right)^{-1}\left({\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)\right)^{-1}}

a r c c F h ( z ) = 1 / 2 + ( 1 / 2 ( 2 + z 5 ) 2 z 5 ( 5 + 1 ) H e u n C ( 0 , 1 / 2 , 0 , 0 , 1 / 4 , 5 / 4 z 2 5 / 4 z 2 1 ) ( 2 + z 5 ) 1 1 5 z 2 + 4 ( 5 1 ) 1 1 / 4 ( 2 + z 5 ) 2 π ( 5 + 1 ) ( 2 + z 5 ) ( 5 1 ) ) ( H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) ) 1 {\displaystyle arccFh(z)=-1/2+\left(1/2\,{\sqrt {-\left(-2+z{\sqrt {5}}\right)^{2}}}z{\sqrt {5}}\left({\sqrt {5}}+1\right){\it {HeunC}}\left(0,1/2,0,0,1/4,5/4\,{\frac {{z}^{2}}{5/4\,{z}^{2}-1}}\right)\left(-2+z{\sqrt {5}}\right)^{-1}{\frac {1}{\sqrt {-5\,{z}^{2}+4}}}\left({\sqrt {5}}-1\right)^{-1}-1/4\,{\frac {{\sqrt {-\left(-2+z{\sqrt {5}}\right)^{2}}}\pi \,\left({\sqrt {5}}+1\right)}{\left(-2+z{\sqrt {5}}\right)\left({\sqrt {5}}-1\right)}}\right)\left({\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)\right)^{-1}}

a r c t F h ( x ) = z = 4 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) H e u n B ( 2 , 0 , 0 , 0 , 2 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 ) e 1 / 2 4 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) x 5 + 4 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) x 2 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 2 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) + i π 5 + i π 5 + 1 ( 5 + 1 ) 1 ( e 2 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 ) 1 ( 2 i ( 2 x + 1 ) ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 + π ) 1 ( H e u n B ( 2 , 0 , 0 , 0 , 2 ( 1 2 x ) ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 + 1 / 2 i π ) ) 1 {\displaystyle arctFh(x)=z=4\,x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right){\it {HeunB}}\left(2,0,0,0,2\,{\sqrt {\frac {x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}}\right){{\rm {e}}^{1/2\,{\frac {-4\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)x{\sqrt {5}}+4\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)x-2\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right){\sqrt {5}}+2\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)+i\pi \,{\sqrt {5}}+i\pi }{{\sqrt {5}}+1}}}}\left({\sqrt {5}}+1\right)^{-1}\left({{\rm {e}}^{2\,{\frac {x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}}}\right)^{-1}\left({\frac {2\,i\left(2\,x+1\right)\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}+\pi \right)^{-1}\left({\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {{\frac {\left(-1-2\,x\right)\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}+1/2\,i\pi }}\right)\right)^{-1}}

相关

  • 自旋量子数在量子力学中,自旋(英语:Spin)是粒子所具有的内禀性质(英语:Intrinsic and extrinsic properties),其运算规则类似于经典力学的角动量,并因此产生一个磁场。虽然有时会与经典力学中的
  • 鼻衄鼻衄即鼻出血,是多种疾病的常见症状,本节只讨论内因引起的鼻衄;出血严重者又称鼻洪。鼻衄甚者,口鼻皆出血,称为鼻大衄、脑衄,若鼻衄经久不愈,称为鼻久衄。导致鼻衄的原因很多,可发生
  • 大三元三双(英语:Triple-double),台湾常以麻将术语称之“大三元”,指篮球比赛中,球员的个人表现在下列正面数据中的任何三项达到两位数:得分、篮板、助攻、抢断和盖帽,最常见的三双是在于
  • 欧加登欧加登(Ogadēn,索马里语称Ogaadeen),是埃塞俄比亚东部索马里州的部分地区,面积约为180,000平方公里,在历史上曾被称为“埃塞俄比亚属索马里”(Ethiopian Somaliland),以与英属索马里
  • 微架构微架构(英语:microarchitecture),也被叫做计算机组织,微架构使得指令集架构(ISA)可以在处理器上被运行。指令集架构可以在不同的微架构上运行。计算机结构是一门探讨微架构与指令集
  • 周传瑛周传瑛(1912年-1988年2月16日),原名周根荣,江苏苏州人,中国昆曲表演艺术家,传字辈演员,中国共产党党员。1921年进入昆剧传习所学习,师承沈月泉,工小生。1956年起长期担任浙江昆剧团团
  • 埃尔维·西内尔沃埃尔维·奥莉基·西内尔沃(芬兰语:Elvi Aulikki Sinervo,1912年5月4日-1986年8月28日)是芬兰工人阶级的作家、诗人和翻译家。她的创作高峰期在1931至1956年间。1950年代起她也开
  • 赵银政首尔艺术高等学校(朝鲜语:서울예술고등학교) 韩国舞蹈科 赵银政(韩语:조은정,英语:Cho Eun Jung,1994年3月25日-),常误译为赵恩静、赵银郑,韩国主播、女艺人。六岁开始习舞,毕业于首尔艺
  • 弗里德里希·维特弗里德里希·耶雷米亚斯·维特(德语:Friedrich Jeremias Witt,1770年11月8日-1836年1月3日),德国作曲家、大提琴家。维特即为著名的C大调交响曲(即耶拿交响曲(英语:Jena Symphony))的作
  • 德州电锯杀人狂前传《德州电锯杀人狂前传》(英语:)是一部2006年美国砍杀电影,由强纳森·李伯斯曼执导,谢尔顿·特纳和大卫·J·杰修编剧。该片为2003年电影《德州电锯杀人狂》的前传,同时也是《德州