斐波那契双曲函数

✍ dations ◷ 2025-07-02 09:10:04 #特殊函数

斐波那契双曲函数(Fibonoacci hyperbolic functions)是一个与黄金分割有关的特殊函数

定义如下:

s F h ( x ) = 2 s i n h ( 2 x α ) 5 {\displaystyle sFh(x)={\frac {2*sinh(2*x*\alpha )}{\sqrt {5}}}}

其中 α {\displaystyle \alpha } 是黄金分割的对数:

α = l n ( ϕ ) = l n 1 + 5 2 = 0.4812118246 {\displaystyle \alpha =ln(\phi )=ln{\frac {1+{\sqrt {5}}}{2}}=0.4812118246}


c F h ( x ) = 2 s i n h ( 2 x α ) 5 {\displaystyle cFh(x)={\frac {2*sinh(2*x*\alpha )}{\sqrt {5}}}}



t F h ( x ) = f s h ( x ) f c h ( x ) {\displaystyle tFh(x)={\frac {fsh(x)}{fch(x)}}}





a r c s F h ( z ) = 1 / 2 z 5 ( 5 + 1 ) H e u n C ( 0 , 1 / 2 , 0 , 0 , 1 / 4 , 5 z 2 5 z 2 + 4 ) 1 5 z 2 + 4 ( 5 1 ) 1 ( H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) ) 1 {\displaystyle arcsFh(z)=1/2\,z{\sqrt {5}}\left({\sqrt {5}}+1\right){\it {HeunC}}\left(0,1/2,0,0,1/4,5\,{\frac {{z}^{2}}{5\,{z}^{2}+4}}\right){\frac {1}{\sqrt {5\,{z}^{2}+4}}}\left({\sqrt {5}}-1\right)^{-1}\left({\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)\right)^{-1}}

a r c c F h ( z ) = 1 / 2 + ( 1 / 2 ( 2 + z 5 ) 2 z 5 ( 5 + 1 ) H e u n C ( 0 , 1 / 2 , 0 , 0 , 1 / 4 , 5 / 4 z 2 5 / 4 z 2 1 ) ( 2 + z 5 ) 1 1 5 z 2 + 4 ( 5 1 ) 1 1 / 4 ( 2 + z 5 ) 2 π ( 5 + 1 ) ( 2 + z 5 ) ( 5 1 ) ) ( H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) ) 1 {\displaystyle arccFh(z)=-1/2+\left(1/2\,{\sqrt {-\left(-2+z{\sqrt {5}}\right)^{2}}}z{\sqrt {5}}\left({\sqrt {5}}+1\right){\it {HeunC}}\left(0,1/2,0,0,1/4,5/4\,{\frac {{z}^{2}}{5/4\,{z}^{2}-1}}\right)\left(-2+z{\sqrt {5}}\right)^{-1}{\frac {1}{\sqrt {-5\,{z}^{2}+4}}}\left({\sqrt {5}}-1\right)^{-1}-1/4\,{\frac {{\sqrt {-\left(-2+z{\sqrt {5}}\right)^{2}}}\pi \,\left({\sqrt {5}}+1\right)}{\left(-2+z{\sqrt {5}}\right)\left({\sqrt {5}}-1\right)}}\right)\left({\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)\right)^{-1}}

a r c t F h ( x ) = z = 4 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) H e u n B ( 2 , 0 , 0 , 0 , 2 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 ) e 1 / 2 4 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) x 5 + 4 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) x 2 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 2 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) + i π 5 + i π 5 + 1 ( 5 + 1 ) 1 ( e 2 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 ) 1 ( 2 i ( 2 x + 1 ) ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 + π ) 1 ( H e u n B ( 2 , 0 , 0 , 0 , 2 ( 1 2 x ) ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 + 1 / 2 i π ) ) 1 {\displaystyle arctFh(x)=z=4\,x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right){\it {HeunB}}\left(2,0,0,0,2\,{\sqrt {\frac {x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}}\right){{\rm {e}}^{1/2\,{\frac {-4\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)x{\sqrt {5}}+4\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)x-2\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right){\sqrt {5}}+2\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)+i\pi \,{\sqrt {5}}+i\pi }{{\sqrt {5}}+1}}}}\left({\sqrt {5}}+1\right)^{-1}\left({{\rm {e}}^{2\,{\frac {x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}}}\right)^{-1}\left({\frac {2\,i\left(2\,x+1\right)\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}+\pi \right)^{-1}\left({\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {{\frac {\left(-1-2\,x\right)\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}+1/2\,i\pi }}\right)\right)^{-1}}

相关

  • 爱德华·吉约埃都尔德·吉约(法语:Édouard Guillaud,又译爱德华·吉约,1953年7月10日-)法国海军退役上将。他曾参与戴高乐号航空母舰的设计,曾担任法军国防参谋总长。
  • 卡米耶·毕沙罗卡米耶·毕沙罗(Camille Pissarro 法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000
  • 日军日本军(日语:日本軍/にほんぐん、にっぽんぐん Nihon-gun、Nippon-gun */?),简称日军,广义上是指日本的国家军队,但通常指大日本帝国时期(明治维新至第二次世界大战结束前)的日本军
  • 帽子是戴在头部的服饰,有遮阳、挡雨、防尘、美观、保护头部等用途。以下列出几种常见的帽子款式,详见帽子款式列表.
  • 马哈拉施特拉邦马哈拉施特拉邦(马拉提语:महाराष्ट्र,印地语:महाराष्ट्र,拉丁字母转写:mahārāṣṭra),位于印度中部,西邻阿拉伯海,与印度卡纳塔克邦、特伦甘纳邦、果阿邦、古吉
  • 爱辉爱辉区是中国黑龙江省黑河市的一个市辖区,瑷珲在满语有“可畏”的意思,1956年改称“爱辉”。瑷珲也曾称为艾浑、爱呼、艾浒,都是根椐境内流过的艾虎河(也称鼎河,在俄罗斯境内称藏
  • 库特·维尔特库特·维尔特(Kurt Welter,1916年2月25日-1949年3月7日),是第二次世界大战时期德国空军的战斗机飞行员。1949年3月7日,维尔特在莱克附近等平交道时被违规超载的列车上掉下的原木砸
  • 夏伟 (1940年)夏伟(Orville Schell)(1940年5月20日-)是一名美国作家、学者和社会运动家,以研究中国闻名。现任亚洲协会中美关系中心主任,曾任加利福尼亚大学柏克莱分校新闻学院院长。先后就读庞
  • 图方格阿恩杰图方格阿恩杰(Tufanganj),是印度西孟加拉邦Koch Bihar县的一个城镇。总人口19293(2001年)。该地2001年总人口19293人,其中男性9797人,女性9496人;0—6岁人口1831人,其中男943人,女888
  • 实原登实原登,日本动画师、动画演出家。静冈县滨松市出身。中村Production出身,现时加入了Studio Pastoral。人物设计和制作设计均充分呈现原作,在制作《魔法老师》两部OAD时对此显得