斐波那契双曲函数

✍ dations ◷ 2025-06-08 11:28:51 #特殊函数

斐波那契双曲函数(Fibonoacci hyperbolic functions)是一个与黄金分割有关的特殊函数

定义如下:

s F h ( x ) = 2 s i n h ( 2 x α ) 5 {\displaystyle sFh(x)={\frac {2*sinh(2*x*\alpha )}{\sqrt {5}}}}

其中 α {\displaystyle \alpha } 是黄金分割的对数:

α = l n ( ϕ ) = l n 1 + 5 2 = 0.4812118246 {\displaystyle \alpha =ln(\phi )=ln{\frac {1+{\sqrt {5}}}{2}}=0.4812118246}


c F h ( x ) = 2 s i n h ( 2 x α ) 5 {\displaystyle cFh(x)={\frac {2*sinh(2*x*\alpha )}{\sqrt {5}}}}



t F h ( x ) = f s h ( x ) f c h ( x ) {\displaystyle tFh(x)={\frac {fsh(x)}{fch(x)}}}





a r c s F h ( z ) = 1 / 2 z 5 ( 5 + 1 ) H e u n C ( 0 , 1 / 2 , 0 , 0 , 1 / 4 , 5 z 2 5 z 2 + 4 ) 1 5 z 2 + 4 ( 5 1 ) 1 ( H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) ) 1 {\displaystyle arcsFh(z)=1/2\,z{\sqrt {5}}\left({\sqrt {5}}+1\right){\it {HeunC}}\left(0,1/2,0,0,1/4,5\,{\frac {{z}^{2}}{5\,{z}^{2}+4}}\right){\frac {1}{\sqrt {5\,{z}^{2}+4}}}\left({\sqrt {5}}-1\right)^{-1}\left({\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)\right)^{-1}}

a r c c F h ( z ) = 1 / 2 + ( 1 / 2 ( 2 + z 5 ) 2 z 5 ( 5 + 1 ) H e u n C ( 0 , 1 / 2 , 0 , 0 , 1 / 4 , 5 / 4 z 2 5 / 4 z 2 1 ) ( 2 + z 5 ) 1 1 5 z 2 + 4 ( 5 1 ) 1 1 / 4 ( 2 + z 5 ) 2 π ( 5 + 1 ) ( 2 + z 5 ) ( 5 1 ) ) ( H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) ) 1 {\displaystyle arccFh(z)=-1/2+\left(1/2\,{\sqrt {-\left(-2+z{\sqrt {5}}\right)^{2}}}z{\sqrt {5}}\left({\sqrt {5}}+1\right){\it {HeunC}}\left(0,1/2,0,0,1/4,5/4\,{\frac {{z}^{2}}{5/4\,{z}^{2}-1}}\right)\left(-2+z{\sqrt {5}}\right)^{-1}{\frac {1}{\sqrt {-5\,{z}^{2}+4}}}\left({\sqrt {5}}-1\right)^{-1}-1/4\,{\frac {{\sqrt {-\left(-2+z{\sqrt {5}}\right)^{2}}}\pi \,\left({\sqrt {5}}+1\right)}{\left(-2+z{\sqrt {5}}\right)\left({\sqrt {5}}-1\right)}}\right)\left({\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)\right)^{-1}}

a r c t F h ( x ) = z = 4 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) H e u n B ( 2 , 0 , 0 , 0 , 2 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 ) e 1 / 2 4 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) x 5 + 4 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) x 2 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 2 H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) + i π 5 + i π 5 + 1 ( 5 + 1 ) 1 ( e 2 x ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 ) 1 ( 2 i ( 2 x + 1 ) ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 + π ) 1 ( H e u n B ( 2 , 0 , 0 , 0 , 2 ( 1 2 x ) ( 5 1 ) H e u n C ( 0 , 1 , 0 , 0 , 1 / 2 , 5 1 5 + 1 ) 5 + 1 + 1 / 2 i π ) ) 1 {\displaystyle arctFh(x)=z=4\,x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right){\it {HeunB}}\left(2,0,0,0,2\,{\sqrt {\frac {x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}}\right){{\rm {e}}^{1/2\,{\frac {-4\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)x{\sqrt {5}}+4\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)x-2\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right){\sqrt {5}}+2\,{\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)+i\pi \,{\sqrt {5}}+i\pi }{{\sqrt {5}}+1}}}}\left({\sqrt {5}}+1\right)^{-1}\left({{\rm {e}}^{2\,{\frac {x\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}}}\right)^{-1}\left({\frac {2\,i\left(2\,x+1\right)\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}+\pi \right)^{-1}\left({\it {HeunB}}\left(2,0,0,0,{\sqrt {2}}{\sqrt {{\frac {\left(-1-2\,x\right)\left({\sqrt {5}}-1\right){\it {HeunC}}\left(0,1,0,0,1/2,{\frac {{\sqrt {5}}-1}{{\sqrt {5}}+1}}\right)}{{\sqrt {5}}+1}}+1/2\,i\pi }}\right)\right)^{-1}}

相关

  • 粪小杆线虫粪小杆线虫(学名:Strongyloides stercoralis,俗名:threadworm(美)。又称粪线虫)是一种在人类身上的线虫(寄生虫),会导致粪线虫感染症(英语:Strongyloidiasis)。。粪小杆线虫可以寄宿
  • 探头探头可能指:
  • 伦敦大火纪念碑伦敦大火纪念碑,一般称为 纪念碑,是位于伦敦市的罗马多立克柱式石柱,邻近伦敦桥的北端,树以纪念伦敦大火。纪念碑位于纪念碑街与费雪街山丘上,62米高,并且距离1666年9月2日伦敦大
  • 达沃市达沃市(又译纳卯市;英语:Davao City;他加禄语:Lungsod ng Dabaw),市长为萨拉·杜特尔特,是菲律宾南部棉兰老岛最重要的城市,位于该岛东部,面积2,433.61平方公里,常住人口1,363,337人(200
  • 埃格斯特朗埃格斯特朗(Ångström, 简称埃,符号Å)是一个长度计量单位。它不是国际制单位,但是可与国际制单位进行换算,即1 Å = 10–10 米 = 0.1纳米。一般用于原子直径、化学键长和可见光
  • 各国时区列表本列表列出各国现行时区规划,根据国家或地区的时区数量进行排序,时区包括各国属地的时区(排除南极领地),法国为时区最多的国家,共计12个时区,部分国家采行夏时制,于夏季时调快一小
  • 煤精煤精(英语:jet),又称煤精石、煤玉、黑玉、黑碳石,是一种有机宝石,为黑色或黑褐色固体,存在于沉积岩中,是远古树木在温度和压力作用下分解而成。其主要产地有:英格兰北部约克郡海岸,法
  • 珍罗兰山洞群珍罗兰山洞群(Binoomea, Bindo, Binda,Binoomea 意为黑暗处)是坐落于澳大利亚东部新南威尔士州蓝山西侧,中心高原地区珍罗兰卡斯特自然保护区的钟乳石洞。该山洞群3083公顷的保
  • 火炮列表以下是世界各地的火炮列表,以类别及口径作分类。详见多管火箭炮,洲际导弹。
  • 尊室湛尊室湛(越南语:Tôn Thất Trạm/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","