八边形

✍ dations ◷ 2025-10-11 07:00:44 #多边形

在几何学中,八边形,又称八角形是指有八条边和八个顶点的多边形,其内角和为1080度。八边形有很多种,其中对称性最高的是正八边形。其他的八边形依照其类角的性质可以分成凸八边形和非凸八边形,其中凸八边形代表所有内角角度皆小于180度。非凸八边形可以在近一步分成凹八边形和星形八边形,其中星形八边形表示边自我相交的八边形。

所有八边形都可以利用顶点切割成6个三角形,而每个三角形的内角和为180度,因此所有八边形的内角和都是1080度。特别的,因为任意多边形最终会绕一圈连回最初的点,因此所有外角的和等于圆周,因此所有多边形的外角和都是360度。

若在一个任意八边形的每个边上都构造一个边长与原八边形相同的正方形,其中一个边为八边形的边,且他们都统一在该八边形的内部或外部,则每个正方形向对面正方形的几何中心连心线的中间点所构成的四边形其对角线会垂直且等长:Prop. 9。

而任意八边形的中点八边形,即把任意八边形每个边中点与相邻边中点连线成的八边形,换句话说就是对偶八边形,若将这种八边形每个边上都构造一个边长与原八边形相同的正方形,且他们都统一在该八边形的内部或外部,则每个正方形向对面正方形的重心连心线的中点所构成的四边形是正方形:Prop. 10。

任意八边形都有这种性质,不论凸、非凸或复杂八边形,但八条边的复合图形则除外。

正八边形是指所有边等长、所有角等角的八边形,由八条相同长度的边和八个相同大小的角构成,是一种正多边形。正八边形的内角是 3π/4 弧度,换算成角度是135度。在施莱夫利符号中用 {8} 来表示。由于正八边形可看作是截去所有顶点的正方形,即截角的正方形,因此在施莱夫利符号中也可以计为 t{4}。而截角的八边形为十六边形,在施莱夫利符号计为 t{8}。正八边形可以被分割成两个梯形跟一个矩形,这种图称为八边形-四边形图。

对于一个已给定边长a的正八边形,其面积为:

若已知外接圆半径为R,其面积为:

若已知内切圆半径或边心距为r,则其面积为:

其面积也可以表示为:

其中,S是八边形的宽度,其值与次短对角线相等;a是边长,或者某个底边的长度。这个面积的公是十分容易证明。取一个正八边形,在正八边形外变化一个正方形,并确保正方形与正八边形的其中四条边部分重叠,然后将正方形四个直角依据正八边形的边长分割出四个等腰直角三角形。取下四个等腰直角三角形可以拼出一个边长与正八边形边长相等的正方形

已知边长为,则其宽度是

然后面积为

若以宽度来表示其面积,则为

另外一个简化的面积表示为

若已知,边长就能被确定,即上面将正方形切割成正八边形的过程

被切去的三角形的底边长 e = a / 2 , {\displaystyle e=a/{\sqrt {2}},} 和计算得:

边长为的正八边形外接圆半径为:

内切圆半径为:

{}来表示。

扭歪八边形,又称不共面八边形,是指顶点并非完全共面的八边形。

一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪八边形。这些扭歪多边形显示于射影的A7、B4和D5考克斯特平面(英语:Coxeter plane)。

正八边形具有Dih8的二面体群对称性,阶数为16。九边形的二面体群对称群共有3个子群,他们分别为:Dih4、Dih2和Dih1;其循环群也有4个子群,他们分别为:Z8、Z4、Z2和Z1

K8完全图经常会被以正八边形的图形绘制来描述其28条连接边。这个图与七维正八胞体的正投影图(英语:orthographic projection)同为8个顶点和28条边。

另外K8完全图也显示了八边形的20条对角线。

八边形经常用在艺术品、建筑物或产品设计上。例如八角门。在建筑物主体上,八边形通常会使建筑物程八角柱,例如十三行博物馆的主要建筑物。在产品设计上,知名电脑公司苹果公司曾以八边形的形状进行iPhone的设计。

相关

  • 吉尼斯紀錄《吉尼斯世界纪录大全》(英语:Guinness World Records),是一本记载着世界之最的工具书,包括天文地理、历史科学不同领域的世界纪录等,该书每年均会出版一次。本书本身亦保持着一项
  • 南京云锦织造技艺云锦是一种中国传统提花丝织锦缎,为南京特产。因其图案绚丽、纹饰华美如天上云霞而得名,与四川蜀锦、苏州宋锦并称“中国三大名锦”。云锦至今有约1600年的历史。东晋义熙十三
  • 约克夏㹴约克夏㹴(约瑟爹利,Yorkshire Terrier),是小型的玩赏狗的一种。个性聪明又自信、警觉性高和友善之外又带点固执,一般都喜爱撒娇。由于行走时双脚会被华丽的长毛遮盖,就好像在自然
  • 体育竞技体育类游戏或称运动类游戏,是一种让玩家模拟参与专业的体育运动项目的电视游戏或电脑游戏。该游戏类别的内容多数以较为人认识的体育赛事(例:NBA,世界杯足球赛)为蓝本。多数受欢
  • 康乃迪克州康涅狄格州(英语:State of Connecticut),简称康州,是美国东北部的一州,也是新英格兰区域中最南的一州。在美国独立战争时期,是13州联盟之一。州花山桂,州鸟美洲知更鸟,州树白橡。美国
  • 民主党社会自由主义 第三条道路 共生主义民主党(みんしゅとう)是日本政党,1998年由多个在野政党合并而成,2009年至2012年为日本的执政党,2016年与维新党的一部分合并组成民进党。1996
  • 幕末群英传《幕末群英传》(日语:狼よ落日を斬れ,英语:The Last Samurai),是1974年9月21日日本上映的时代剧,导演三隅研次的遗作,叙述幕末武士的激烈战斗。
  • 茱蒂·哈勒戴茱蒂·霍利德(英语:Judy Holliday,1921年6月21日-1965年6月7日),美国女演员,曾获奥斯卡最佳女主角奖与金球奖最佳音乐及喜剧类电影女主角。茱蒂·霍利德是家中独生女,出生时名为朱迪
  • 第五机械工业部1963年,第五机械工业部由第三机械工业部分出。1982年,第五届全国人民代表大会常务委员会第二十三次会议审议了国务院机构改革实施方案和赵紫阳总理关于国务院机构改革进展情况
  • 牛肝菌属参见文内牛肝菌属(学名:)为牛肝菌科的一属。