八边形

✍ dations ◷ 2024-12-23 01:10:09 #多边形

在几何学中,八边形,又称八角形是指有八条边和八个顶点的多边形,其内角和为1080度。八边形有很多种,其中对称性最高的是正八边形。其他的八边形依照其类角的性质可以分成凸八边形和非凸八边形,其中凸八边形代表所有内角角度皆小于180度。非凸八边形可以在近一步分成凹八边形和星形八边形,其中星形八边形表示边自我相交的八边形。

所有八边形都可以利用顶点切割成6个三角形,而每个三角形的内角和为180度,因此所有八边形的内角和都是1080度。特别的,因为任意多边形最终会绕一圈连回最初的点,因此所有外角的和等于圆周,因此所有多边形的外角和都是360度。

若在一个任意八边形的每个边上都构造一个边长与原八边形相同的正方形,其中一个边为八边形的边,且他们都统一在该八边形的内部或外部,则每个正方形向对面正方形的几何中心连心线的中间点所构成的四边形其对角线会垂直且等长:Prop. 9。

而任意八边形的中点八边形,即把任意八边形每个边中点与相邻边中点连线成的八边形,换句话说就是对偶八边形,若将这种八边形每个边上都构造一个边长与原八边形相同的正方形,且他们都统一在该八边形的内部或外部,则每个正方形向对面正方形的重心连心线的中点所构成的四边形是正方形:Prop. 10。

任意八边形都有这种性质,不论凸、非凸或复杂八边形,但八条边的复合图形则除外。

正八边形是指所有边等长、所有角等角的八边形,由八条相同长度的边和八个相同大小的角构成,是一种正多边形。正八边形的内角是 3π/4 弧度,换算成角度是135度。在施莱夫利符号中用 {8} 来表示。由于正八边形可看作是截去所有顶点的正方形,即截角的正方形,因此在施莱夫利符号中也可以计为 t{4}。而截角的八边形为十六边形,在施莱夫利符号计为 t{8}。正八边形可以被分割成两个梯形跟一个矩形,这种图称为八边形-四边形图。

对于一个已给定边长a的正八边形,其面积为:

若已知外接圆半径为R,其面积为:

若已知内切圆半径或边心距为r,则其面积为:

其面积也可以表示为:

其中,S是八边形的宽度,其值与次短对角线相等;a是边长,或者某个底边的长度。这个面积的公是十分容易证明。取一个正八边形,在正八边形外变化一个正方形,并确保正方形与正八边形的其中四条边部分重叠,然后将正方形四个直角依据正八边形的边长分割出四个等腰直角三角形。取下四个等腰直角三角形可以拼出一个边长与正八边形边长相等的正方形

已知边长为,则其宽度是

然后面积为

若以宽度来表示其面积,则为

另外一个简化的面积表示为

若已知,边长就能被确定,即上面将正方形切割成正八边形的过程

被切去的三角形的底边长 e = a / 2 , {\displaystyle e=a/{\sqrt {2}},} 和计算得:

边长为的正八边形外接圆半径为:

内切圆半径为:

{}来表示。

扭歪八边形,又称不共面八边形,是指顶点并非完全共面的八边形。

一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪八边形。这些扭歪多边形显示于射影的A7、B4和D5考克斯特平面(英语:Coxeter plane)。

正八边形具有Dih8的二面体群对称性,阶数为16。九边形的二面体群对称群共有3个子群,他们分别为:Dih4、Dih2和Dih1;其循环群也有4个子群,他们分别为:Z8、Z4、Z2和Z1

K8完全图经常会被以正八边形的图形绘制来描述其28条连接边。这个图与七维正八胞体的正投影图(英语:orthographic projection)同为8个顶点和28条边。

另外K8完全图也显示了八边形的20条对角线。

八边形经常用在艺术品、建筑物或产品设计上。例如八角门。在建筑物主体上,八边形通常会使建筑物程八角柱,例如十三行博物馆的主要建筑物。在产品设计上,知名电脑公司苹果公司曾以八边形的形状进行iPhone的设计。

相关

  • 选择压力演化压力,或选择压力,可以被认为是外界施与一个生物演化过程的压力,从而改变该过程的前进方向。所谓达尔文的自然选择,或者物竞天择,适者生存,即是说,自然界施与生物体选择压力从而
  • 怀孕妊娠(英语:pregnancy),又称怀孕,是指胚胎或胎儿(英语:Offspring)在哺乳类雌性体内孕育成长的过程,而在哺乳动物中研究得最详细的是人类的妊娠。人类的妊娠约40周,从受精排卵算起则为38
  • 博拉-维托托语系博拉-维托托语系是一个分布于秘鲁东北部、哥伦比亚西南部和巴西西部的语系。博拉-维托托语系还可能包括以下语言:
  • 反硝化反应脱硝反应(英语:denitrification,亦称为脱硝作用、脱氮作用)是指细菌将硝酸盐(NO3−)中的氮(N)通过一系列中间产物(NO2−、NO、N2O)还原为氮气分子(N2)的生物化学过程。参与这一过程的细
  • 王诗琅王诗琅(1908年2月26日-1984年11月6日),台湾作家,笔名王锦江。王诗琅是台湾艋舺人,笔名王锦江。自幼进入私塾就读,对稗官野史及传记小说特别感兴趣。王诗琅16岁(1924年)时组织“励学会
  • 强度和广延性质在物理学中,强度性质(英语:intensive property)是指系统中不随系统大小或系统中物质多少而改变的物理性质,强度性质是尺度不变(英语:Scale invariance)的物理量。相反的,广延性质(英语
  • 第33位中华人民共和国是世界上人口最多的国家。根据2010年中华人民共和国第6次人口普查的统计结果,中华人民共和国大陆地区的人口有13亿3972万人。以下是中国大陆地区于2010年底,省
  • 南加利福尼亚加州南部(Southern California)是美国加州南部的超级城市区,范围包含大洛杉矶地区及大圣地牙哥都会区。加州南部范围从文图拉延伸至圣地牙哥,其南端则是美墨边境。
  • 赫克歇尔-奥林定理赫克歇尔-奥林定理(英语:Heckscher–Ohlin theorem),简称H-O定理,是根据赫克歇尔-奥林模型推导而出的经济学定理,由伊莱·赫克斯赫和贝蒂尔·奥林提出。揭示了每个国家拥有相对优
  • 2019冠状病毒病法罗群岛疫情2019冠状病毒病法罗群岛疫情,介绍在2019新型冠状病毒疫情中,在法罗群岛发生的情况。2020年3月4日,法罗群岛确诊首例,患者为男性,症状轻微,曾在法国巴黎开会。3月6日,新增1例确诊病