八边形

✍ dations ◷ 2025-12-08 16:08:37 #多边形

在几何学中,八边形,又称八角形是指有八条边和八个顶点的多边形,其内角和为1080度。八边形有很多种,其中对称性最高的是正八边形。其他的八边形依照其类角的性质可以分成凸八边形和非凸八边形,其中凸八边形代表所有内角角度皆小于180度。非凸八边形可以在近一步分成凹八边形和星形八边形,其中星形八边形表示边自我相交的八边形。

所有八边形都可以利用顶点切割成6个三角形,而每个三角形的内角和为180度,因此所有八边形的内角和都是1080度。特别的,因为任意多边形最终会绕一圈连回最初的点,因此所有外角的和等于圆周,因此所有多边形的外角和都是360度。

若在一个任意八边形的每个边上都构造一个边长与原八边形相同的正方形,其中一个边为八边形的边,且他们都统一在该八边形的内部或外部,则每个正方形向对面正方形的几何中心连心线的中间点所构成的四边形其对角线会垂直且等长:Prop. 9。

而任意八边形的中点八边形,即把任意八边形每个边中点与相邻边中点连线成的八边形,换句话说就是对偶八边形,若将这种八边形每个边上都构造一个边长与原八边形相同的正方形,且他们都统一在该八边形的内部或外部,则每个正方形向对面正方形的重心连心线的中点所构成的四边形是正方形:Prop. 10。

任意八边形都有这种性质,不论凸、非凸或复杂八边形,但八条边的复合图形则除外。

正八边形是指所有边等长、所有角等角的八边形,由八条相同长度的边和八个相同大小的角构成,是一种正多边形。正八边形的内角是 3π/4 弧度,换算成角度是135度。在施莱夫利符号中用 {8} 来表示。由于正八边形可看作是截去所有顶点的正方形,即截角的正方形,因此在施莱夫利符号中也可以计为 t{4}。而截角的八边形为十六边形,在施莱夫利符号计为 t{8}。正八边形可以被分割成两个梯形跟一个矩形,这种图称为八边形-四边形图。

对于一个已给定边长a的正八边形,其面积为:

若已知外接圆半径为R,其面积为:

若已知内切圆半径或边心距为r,则其面积为:

其面积也可以表示为:

其中,S是八边形的宽度,其值与次短对角线相等;a是边长,或者某个底边的长度。这个面积的公是十分容易证明。取一个正八边形,在正八边形外变化一个正方形,并确保正方形与正八边形的其中四条边部分重叠,然后将正方形四个直角依据正八边形的边长分割出四个等腰直角三角形。取下四个等腰直角三角形可以拼出一个边长与正八边形边长相等的正方形

已知边长为,则其宽度是

然后面积为

若以宽度来表示其面积,则为

另外一个简化的面积表示为

若已知,边长就能被确定,即上面将正方形切割成正八边形的过程

被切去的三角形的底边长 e = a / 2 , {\displaystyle e=a/{\sqrt {2}},} 和计算得:

边长为的正八边形外接圆半径为:

内切圆半径为:

{}来表示。

扭歪八边形,又称不共面八边形,是指顶点并非完全共面的八边形。

一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪八边形。这些扭歪多边形显示于射影的A7、B4和D5考克斯特平面(英语:Coxeter plane)。

正八边形具有Dih8的二面体群对称性,阶数为16。九边形的二面体群对称群共有3个子群,他们分别为:Dih4、Dih2和Dih1;其循环群也有4个子群,他们分别为:Z8、Z4、Z2和Z1

K8完全图经常会被以正八边形的图形绘制来描述其28条连接边。这个图与七维正八胞体的正投影图(英语:orthographic projection)同为8个顶点和28条边。

另外K8完全图也显示了八边形的20条对角线。

八边形经常用在艺术品、建筑物或产品设计上。例如八角门。在建筑物主体上,八边形通常会使建筑物程八角柱,例如十三行博物馆的主要建筑物。在产品设计上,知名电脑公司苹果公司曾以八边形的形状进行iPhone的设计。

相关

  • UprifosbuvirUprifosbuvir(MK-3682)是一种开发用于治疗丙型肝炎的抗病毒药物。它是一种核苷酸类似物,可用作NS5B RNA聚合酶抑制剂,目前处于III期人体临床试验中。
  • 埃莱夫西纳埃莱夫西纳(希腊语:Ελευσίνα;现代希腊语:.mw-parser-output .Polytonic{font-family:"SBL BibLit","SBL Greek","EB Garamond","EB Garamond 12","Foulis Greek",Cardo,
  • CMg有机镁化学是研究含有镁-碳键的化学分支。有机镁化合物中,镁都已正二价的形式出现。格氏试剂(Grignard reagent)是最重要的一类有机镁化合物,它由卤代烃和镁在适宜的条件下(如溶
  • 群件群件(Collaborative software或Groupware),又称为群组软体、協同軟件、协作软件。群件是一个“网络软件”的概念,它定义了由一组(群)人使用的应用程序。它是基于这样一个设想,因为
  • 成田市成田市(日语:成田市/なりたし Narita shi */?)是位于日本千叶县北部的城市。境内有成田国际机场,门前町成田山新胜寺是成田市最早发展的地区,本市也因此而繁荣。人口约10万人。
  • 张道陵张道陵(34年-156年),一名张陵,字辅汉,东汉沛国丰县(今江苏徐州市丰县)人,被视为正一道的创始者,是五斗米道的创始人。道教徒称他为张道陵天师、祖天师、正一真人。相传张道陵以虎为座
  • 贺贤土贺贤土(1937年9月28日-),浙江镇海(今属北仑区)人,中国理论物理学家,国家“863计划”首席科学家之一,中国科学院院士。他为中国核武器研究中作出了突出贡献。1962年,毕业于浙江大学物
  • 辅脂酶n/an/an/an/an/an/an/an/an/an/a辅脂酶(Colipase) 是一种蛋白质辅酶,可提升胰脂酶(英语:lipase)的酵素活性。本蛋白的前体前辅脂酶(procolipase)由胰腺所分泌,此时并没有酵素活性。前
  • 海绵体海绵体是指生物体内一块海绵状可以充血、有内皮的区域,海绵体一般会被平滑肌包围,像阴茎及阴蒂的勃起组织(英语:erectile tissue)就是海绵体(阴茎海绵体、阴蒂海绵体)。
  • 红翅黑鹂红翅黑鹂(学名:Agelaius phoeniceus,英文名:red-winged blackbird),亦作红翅乌鸫、美洲红翼鸫,是黑鹂属的一种鸟类,主要分布于北美洲。分有多个族群,北部的族群在冬季飞往南部过冬,此