秦九韶

✍ dations ◷ 2025-06-30 06:21:15 #1208年出生,1261年逝世,秦姓,安岳人,南宋数学家,中国数学家

秦九韶(1208年-1261年),字道古,中国南宋数学家。著作有《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理的历史解法)和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。

秦九韶的籍贯是鲁郡(今山东省济宁市兖州区、曲阜一带),祖上世代为官。父亲秦季槱(yǒu/ㄧㄡˇ)字宏父,是四川普州(现安岳县)人,曾知潼州府、任职秘阁。1208年,秦九韶生于普州,(今四川安岳)是家里的第二个儿子。嘉定五年(1212年),秦季槱任巴州知州。嘉定十二年(1219年),兴元军士权兴等叛乱,秦季槱守巴州失陷,秦九韶随父亲回到临安(今杭州)。嘉定十五年后,秦季槱擢升工部郎中、秘书少监兼国史院编修官、实录检讨官。由于父亲是掌管各项工程、屯田、水利、交通的工部郎中,又任国史院官职,掌管各类经籍图书,少年的秦九韶得以接触学习各类知识。他生性聪颖,对当时的种种学问,如星象、音乐、算术以及建筑学等无一不学,并专研甚深。他还曾经向当时的隐士求教,学习数学。

十八岁时在乡里为义兵首领。绍定二年(1229年)十月,秦九韶擢某县县尉。端平三年(1236年)一月,秦九韶擢升湖北蕲州(今湖北蕲春县)通判。嘉熙元年(1237年)秋,秦九韶知和州(今安徽和县)。嘉熙二年(1238年),秦季槱逝世,秦九韶回临安吊丧。吊丧期间曾在杭州西溪上设计修建一座桥,后来被朱世杰命名为“道古桥”。

南宋理宗淳祐四年(1244年)八月,秦九劭在建康府(今江苏江宁县)做官(通直郎),十一月因母去世离任,回浙江湖州吊丧。在此期间,他将自己潜心研究的各种实践中的数学成果集撰成书。淳祐七年(1247年)九月,在湖州完成了《数书九章》(当时称为《数学大略》)十八卷,自述“历岁遥塞,荏苒十禩”。宝祐二年(1254年)到建康出任沿江制置司参议,宝祐六年(1258年)出任琼州守,南宋理宗景定元年(1260年)出任梅州(今广东梅县)守,后卒于梅州。《宋史》无传。

而在政治上,他被传述为腐败又残暴的人,会对敌下毒以谋取自身利益,因此被调职多次,更因此富有。

秦九韶的数学成就基本表现在他写的《数书九章》之中。然而,这本书在当时并没有引起大的影响,稍后的杨辉、朱世杰都没有引征过秦九韶的成果。《数书九章》的主要内容偏重于数学的应用方面,全书八十一道题目都是结合当时的实际需要提出的问题。

大衍求一术是一次同余方程组问题的核心解法,现在叫做中国剩余定理。一次同余方程组问题的求解始于《孙子算经》中的“今有物不知数”问题。例如《孙子算经》中的原题是:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

用现代的数学语言表述一般的“物不知数”问题,就是:

在《数书九章》第一卷的“大衍总术”中,秦九韶将 m 1 , m 2 , , m n {\displaystyle m_{1},m_{2},\ldots ,m_{n}} 称为定数,将它们的总乘积 M = m 1 m 2 , m n {\displaystyle M=m_{1}m_{2},\ldots m_{n}} 称为衍母,再将衍母除以各个定数所得到的商: M i = M m i {\displaystyle M_{i}={\frac {M}{m_{i}}}} 称为衍数。接下来他将满足 k i M i 1 ( mod m i ) {\displaystyle k_{i}M_{i}\equiv 1{\pmod {m_{i}}}} 的正整数 k i {\displaystyle k_{i}} 称为乘率,只要知道了各个乘率 k i {\displaystyle k_{i}} ,就可以得到方程组的解:

而计算乘率的方法就是大衍求一术。秦九韶完整地叙述了“大衍求一术”,其实质是辗转相除法的应用。于是,针对同余模数两两互素的情况,秦九韶得到了系统的解法,在模数不是两两同余时,需要将定数修正(剔除公因数)以应用大衍求一术。由于没有素因数分解的概念,秦九韶用了一些技巧来修正定数以使用大衍求一术。

1801年,高斯系统地解决了一元不定方程组的问题,其方法和秦九韶是一样的。

秦九韶算法是一个求一元高次方程的数值解的通用算法,是对贾宪的增乘开方术的改进。13世纪,中国数学家关于开方术的著作很多,但大多散佚,而现传于世的李冶和朱世杰的著作中并没有开方的详细演算步骤。因此,《数书九章》中的“正负开方术”是了解当时解高次方程方法的重要依据。在《数书九章》中,开方法得到极大完善,利用随乘随加的方法得到方程的根。秦九韶的算法中规定“实常为负”。这里的“实”指的是方程中常数项的系数。实际上,秦九韶将方程写作 f ( x ) = 0 {\displaystyle f(x)=0} ,以便统一解决,这是以往的开方术中没有的。所求的方根是无理数时,刘徽曾经首创继续开方,用十进小数来近似表示方程的根的方法。然而这种方法并没有得到后人的重视,直到秦九韶重新采取这种方法。

这个公式和海伦公式是等价的。A>C>B

相关

  • 聚变中子中子(英语:Neutron)是一种电中性的粒子,具有略大于质子的质量。中子属于重子类,由两个下夸克、一个上夸克和用于在它们三者之间作用的胶子共同构成。夸克的静质量只贡献出大约1%
  • 最深地理之最列表纪录了世界在地理方面可创下世界纪录的事物,这里列举了一些地理之最。但巴西高原也可当做世界最高的高原,南极高原仍处于争议中。
  • 活机器活机器(Living Machines)又称活的机器、生活机器或生命机器,它是一种废水处理的设计形式,以模仿湿地的清洁功能。他们是密集的生物修复系统,也可以产生有益的副产物,如甲烷煤气,食
  • 李应红李应红(1963年1月5日-)是一位中国航空推进理论与工程专家,空军工程大学教授。1963年出生于重庆奉节,1983年毕业于空军工程学院航空机械工程系,1989年获华东工学院硕士学位。
  • 可吸入颗粒物悬浮颗粒或称颗粒物(particulate matter (PM))、大气颗粒物(atmospheric particulate matter)、颗粒(particulates),泛指悬浮在空气中的固体颗粒或液滴,颗粒微小甚至肉眼难以辨识但
  • 全概率公式假设{ Bn : n = 1, 2, 3, ... } 是一个概率空间的有限或者可数无限的分割(既 Bn为一完备事件组),且每个集合Bn是一个可测集合,则对任意事件A有全概率公式:又因为此处Pr(A | B)是
  • 广州国际体育演艺中心坐标:23°10′47″N 113°28′52″E / 23.179718°N 113.481195°E / 23.179718; 113.481195宝能国际体育演艺中心是位于广州市黄埔区的一个国际赛事和大型娱乐演艺活动举办
  • 花剌子模花剌子模王朝(波斯语:خوارزمشاهیان‎,意为花剌子模之王)是一个起源于突厥马木鲁克的波斯逊尼派穆斯林统治的王朝。花剌子模王朝在中世纪统治了大部分的大伊朗地区,统
  • 矩 (数学)矩,又称动差,英文为moment。数学中矩的概念来自于物理学。在物理学中,矩是用来表示物体形状的物理量。矩是用于物体形状识别的重要参数指标。定义在实数域上的实函数相对于值的
  • 金田一春彦金田一春彦(1913年4月3日-2004年5月19日),日本语言学家、国语学家。以编纂国语辞典、研究方言而闻名。出生于东京府本乡区(现东京都文京区)。依次毕业于东京府立第六中学校(现为“