秦九韶

✍ dations ◷ 2024-12-22 18:08:44 #1208年出生,1261年逝世,秦姓,安岳人,南宋数学家,中国数学家

秦九韶(1208年-1261年),字道古,中国南宋数学家。著作有《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理的历史解法)和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。

秦九韶的籍贯是鲁郡(今山东省济宁市兖州区、曲阜一带),祖上世代为官。父亲秦季槱(yǒu/ㄧㄡˇ)字宏父,是四川普州(现安岳县)人,曾知潼州府、任职秘阁。1208年,秦九韶生于普州,(今四川安岳)是家里的第二个儿子。嘉定五年(1212年),秦季槱任巴州知州。嘉定十二年(1219年),兴元军士权兴等叛乱,秦季槱守巴州失陷,秦九韶随父亲回到临安(今杭州)。嘉定十五年后,秦季槱擢升工部郎中、秘书少监兼国史院编修官、实录检讨官。由于父亲是掌管各项工程、屯田、水利、交通的工部郎中,又任国史院官职,掌管各类经籍图书,少年的秦九韶得以接触学习各类知识。他生性聪颖,对当时的种种学问,如星象、音乐、算术以及建筑学等无一不学,并专研甚深。他还曾经向当时的隐士求教,学习数学。

十八岁时在乡里为义兵首领。绍定二年(1229年)十月,秦九韶擢某县县尉。端平三年(1236年)一月,秦九韶擢升湖北蕲州(今湖北蕲春县)通判。嘉熙元年(1237年)秋,秦九韶知和州(今安徽和县)。嘉熙二年(1238年),秦季槱逝世,秦九韶回临安吊丧。吊丧期间曾在杭州西溪上设计修建一座桥,后来被朱世杰命名为“道古桥”。

南宋理宗淳祐四年(1244年)八月,秦九劭在建康府(今江苏江宁县)做官(通直郎),十一月因母去世离任,回浙江湖州吊丧。在此期间,他将自己潜心研究的各种实践中的数学成果集撰成书。淳祐七年(1247年)九月,在湖州完成了《数书九章》(当时称为《数学大略》)十八卷,自述“历岁遥塞,荏苒十禩”。宝祐二年(1254年)到建康出任沿江制置司参议,宝祐六年(1258年)出任琼州守,南宋理宗景定元年(1260年)出任梅州(今广东梅县)守,后卒于梅州。《宋史》无传。

而在政治上,他被传述为腐败又残暴的人,会对敌下毒以谋取自身利益,因此被调职多次,更因此富有。

秦九韶的数学成就基本表现在他写的《数书九章》之中。然而,这本书在当时并没有引起大的影响,稍后的杨辉、朱世杰都没有引征过秦九韶的成果。《数书九章》的主要内容偏重于数学的应用方面,全书八十一道题目都是结合当时的实际需要提出的问题。

大衍求一术是一次同余方程组问题的核心解法,现在叫做中国剩余定理。一次同余方程组问题的求解始于《孙子算经》中的“今有物不知数”问题。例如《孙子算经》中的原题是:

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

用现代的数学语言表述一般的“物不知数”问题,就是:

在《数书九章》第一卷的“大衍总术”中,秦九韶将 m 1 , m 2 , , m n {\displaystyle m_{1},m_{2},\ldots ,m_{n}} 称为定数,将它们的总乘积 M = m 1 m 2 , m n {\displaystyle M=m_{1}m_{2},\ldots m_{n}} 称为衍母,再将衍母除以各个定数所得到的商: M i = M m i {\displaystyle M_{i}={\frac {M}{m_{i}}}} 称为衍数。接下来他将满足 k i M i 1 ( mod m i ) {\displaystyle k_{i}M_{i}\equiv 1{\pmod {m_{i}}}} 的正整数 k i {\displaystyle k_{i}} 称为乘率,只要知道了各个乘率 k i {\displaystyle k_{i}} ,就可以得到方程组的解:

而计算乘率的方法就是大衍求一术。秦九韶完整地叙述了“大衍求一术”,其实质是辗转相除法的应用。于是,针对同余模数两两互素的情况,秦九韶得到了系统的解法,在模数不是两两同余时,需要将定数修正(剔除公因数)以应用大衍求一术。由于没有素因数分解的概念,秦九韶用了一些技巧来修正定数以使用大衍求一术。

1801年,高斯系统地解决了一元不定方程组的问题,其方法和秦九韶是一样的。

秦九韶算法是一个求一元高次方程的数值解的通用算法,是对贾宪的增乘开方术的改进。13世纪,中国数学家关于开方术的著作很多,但大多散佚,而现传于世的李冶和朱世杰的著作中并没有开方的详细演算步骤。因此,《数书九章》中的“正负开方术”是了解当时解高次方程方法的重要依据。在《数书九章》中,开方法得到极大完善,利用随乘随加的方法得到方程的根。秦九韶的算法中规定“实常为负”。这里的“实”指的是方程中常数项的系数。实际上,秦九韶将方程写作 f ( x ) = 0 {\displaystyle f(x)=0} ,以便统一解决,这是以往的开方术中没有的。所求的方根是无理数时,刘徽曾经首创继续开方,用十进小数来近似表示方程的根的方法。然而这种方法并没有得到后人的重视,直到秦九韶重新采取这种方法。

这个公式和海伦公式是等价的。A>C>B

相关

  • 学科这是一个学科的列表。学科是在大学教学(教育)与研究的知识分科。学科是被发表研究和学术杂志、学会和系所所定义及承认的。领域通常有子领域或分科,而其之间的分界是随便且模
  • 吴茵吴茵(1909年8月2日-1991年4月10日),女,江苏吴县人,生于天津,中国电影与话剧演员,她一生共演出了45部电影和48个舞台剧。以扮演老年妇女形象著称,被誉为中国影坛“第一老太婆”。吴茵1
  • 理乍得·何奥第一代何奥伯爵理查德·何奥,KG,PC(英语:Richard Howe, 1st Earl Howe,1726年3月8日-1799年8月5日),英国海军军官及政治家,美国独立战争期间曾为北美及西印度舰队总司令(英语:North Ame
  • 阳城坐标:35°29′10″N 112°24′53″E / 35.48611°N 112.41472°E / 35.48611; 112.41472阳城县是山西省晋城市的一个县,位于山西省南端中段,面积1968平方公里,人口约40万,共辖17
  • 家庭医生 (杂志)《家庭医生》是由中国中山大学主办和家庭医生编辑部出版的医疗保健双周刊,创刊于1983年。2003年,曾有报道《家庭医生》杂志出售20年经营权给凯思投资公司。但后来有澄称上述报
  • 遍历性 (信号处理)遍历性是指统计结果在时间和空间上的统一性,表现为时间均值等于空间均值。 例如要得出一个城市A、B两座公园哪一个更受欢迎,有两种办法。第一种办法是在一定的时间段考察两个
  • 鄂乐舜鄂乐舜(满语:ᠣᠯᠣᡧᡡᠨ,穆麟德:;?-1756年),西林觉罗氏。初名鄂敏,字钝夫,号筠亭。满洲镶蓝旗人。清朝政治人物。鄂尔泰从子,原名鄂敏。雍正八年(1730年)中进士,改翰林院庶吉士,散馆授编修
  • 梦幻岛梦幻岛(英语:Neverland)出自于苏格兰小说家及剧作家詹姆士·马修·巴里笔下的《彼得潘》,是处于遥远地方的虚构地点,主角彼得潘(Peter Pan)、仙子小叮当(英语:Tinker Bell)(Tinker Bell
  • 争取变革独立人士争取变革独立人士(英语:Independents 4 Change,缩写为I4C;爱尔兰语:Neamhspleáigh ar son an Athraithe)是爱尔兰的一个左翼政党。该党成立于2014年,当时取名为争取平等运动独立人
  • 艾米·亚当斯艾米·亚当斯(英语:Amy Adams,本名英语:Amy Lou Adams,1974年8月20日-)是一位美国女演员。她曾以《六月虫》(Junebug)夺得广播影评人协会最佳女配角,以及奥斯卡最佳女配角奖提名。亦曾