数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9 = 3 × 3,它是一个平方数。
平方数也称正方形数,若 为平方数,将 个点排成矩形,可以排成一个正方形。
若将平方数概念扩展到有理数,则两个平方数的比仍然是平方数,例如, (2 × 2) / (3 × 3) = 4/9 = 2/3 × 2/3。
若一个整数没有除了 1 之外的平方数为其因数,则称其为无平方数因数的数
前n个平方数
(OEIS中的数列A000290):
一个整数是完全平方数当且仅当相同数目的点能够在平面上排成一个正方形的点阵,使得每行每列的点都一样多。
对于一个整数 ,它的平方写成 2。2等于头 个正奇数的和( 个平方数表示为前一个平方数加上第 个正奇数,如 52 = 25 = 1 + 3 + 5 + 7 + 9 = 16 + 9。即第五个平方数25等于第四个平方数16加上第五个正奇数:9。
每个平方数可以从之前的两个平方数计算得到,递推公式为 2 = 1 + 1 + 2 + 2 + ... + − 1 + − 1 + 。例如,42 = 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4。可以将其解释为在边长为 3 的矩形上添加宽度为 1 的一行和一列,即得到边长为 4 的矩形。这对于计算较大的数的平方数非常有用。例如, 522 = 502 + 50 + 51 + 51 + 52 = 2500 + 204 = 2704.